Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Article in English | MEDLINE | ID: mdl-38870528

ABSTRACT

OBJECTIVES: To evaluate magnetic susceptibility artefacts produced by orthodontic wires on MRI and the influence of wire properties and MRI image sequences on the magnitude of the artefact. METHODS: Arch form orthodontic wires [four stainless steels (SS), one cobalt chromium (CC) alloy, 13 titanium (Ti) alloys] were embedded in a polyester phantom, and scanned using a 1.5-T superconducting magnet scanner with an eight-channel phased-array coil. All wires were scanned with T1-weighted spin echo (SE) and gradient echo (GRE) sequences according to the American Society for Testing and Materials (ASTM) F2119-07 standard. The phantom was also scanned other eight sequences. Artefacts were measured using the ASTM F2119-07 definition and OsiriX software. Artefact volume was analyzed according to metal composition, wire length, number of wires, wire thickness, and imaging sequence as factors. RESULTS: With SE/GRE, black/white artefacts volumes from all SS wires were significantly larger than those produced by CC and Ti wires (P < 0.01). With the GRE, the black artefacts volume was highest with the SS wires. With the SE, the black artefacts volume was small, whereas white artefacts were noticeable. The cranio-caudal extent of the artefacts was significantly longer with SS wires (P < 0.01). Although a direct relationship of wire length, number of wires and wire thickness with artefact volume was noted, these factors did not influence artefact extension in the cranio-caudal direction. CONCLUSIONS: Ferromagnetic/paramagnetic orthodontic wires create artefacts due to local alteration of magnetic field homogeneity. The SS-type wires produced the largest artefacts followed by CC and Ti.

2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612729

ABSTRACT

The delineation of biomarkers and neuropsychiatric symptoms across normal cognition, mild cognitive impairment (MCI), and dementia stages holds significant promise for early diagnosis and intervention strategies. This research investigates the association of neuropsychiatric symptoms, evaluated via the Neuropsychiatric Inventory (NPI), with cerebrospinal fluid (CSF) biomarkers (Amyloid-ß42, P-tau, T-tau) across a spectrum of cognitive states to enhance diagnostic accuracy and treatment approaches. Drawing from the National Alzheimer's Coordinating Center's Uniform Data Set Version 3, comprising 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. To assess neuropsychiatric symptoms, we employed the NPI to understand the behavioral and psychological symptoms associated with each cognitive category. For the analysis of CSF biomarkers, we measured levels of Amyloid-ß42, P-tau, and T-tau using the enzyme-linked immunosorbent assay (ELISA) and Luminex multiplex xMAP assay protocols. These biomarkers are critical in understanding the pathophysiological underpinnings of Alzheimer's disease and its progression, with specific patterns indicative of disease stage and severity. This study cohort consists of 1896 participants, which is composed of 977 individuals with normal cognition, 270 with MCI, and 649 with dementia. Dementia is characterized by significantly higher NPI scores, which are largely reflective of mood-related symptoms (p < 0.001). In terms of biomarkers, normal cognition shows median Amyloid-ß at 656.0 pg/mL, MCI at 300.6 pg/mL, and dementia at 298.8 pg/mL (p < 0.001). Median P-tau levels are 36.00 pg/mL in normal cognition, 49.12 pg/mL in MCI, and 58.29 pg/mL in dementia (p < 0.001). Median T-tau levels are 241.0 pg/mL in normal cognition, 140.6 pg/mL in MCI, and 298.3 pg/mL in dementia (p < 0.001). Furthermore, the T-tau/Aß-42 ratio increases progressively from 0.058 in the normal cognition group to 0.144 in the MCI group, and to 0.209 in the dementia group (p < 0.001). Similarly, the P-tau/Aß-42 ratio also escalates from 0.305 in individuals with normal cognition to 0.560 in MCI, and to 0.941 in dementia (p < 0.001). The notable disparities in NPI and CSF biomarkers among normal, MCI and Alzheimer's patients underscore their diagnostic potential. Their combined assessment could greatly improve early detection and precise diagnosis of MCI and dementia, facilitating more effective and timely treatment strategies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Affect , Amyloidogenic Proteins , Biomarkers , Cognition
3.
Ann Med ; 56(1): 2310142, 2024 12.
Article in English | MEDLINE | ID: mdl-38324920

ABSTRACT

INTRODUCTION: Chronic kidney disease is related to neurodegeneration and structural changes in the brain which might lead to cognitive decline. The Fazekas scale used for assessing white matter hyperintensities (WMHs) was associated with poor cognitive performance. Therefore, this study investigated the associations between the mini-mental status examination (MMSE), Montreal cognitive assessment (MoCA), cognitive abilities screening instrument (CASI), and Fazekas scale in patients under hemodialysis (HD). METHODS: The periventricular (PV) WMHs and deep WMHs (DWMHs) in brain magnetic resonance images of 59 patients under dialysis were graded using the Fazekas scale. Three cognition function tests were also performed, then multivariable ordinal regression and logistic regression were used to identify the associations between cognitive performance and the Fazekas scale. RESULTS: There were inverse associations between the three cognitive function tests across the Fazekas scale of PVWMHs (p = .037, .006, and .008 for MMSE, MoCA, and CASI, respectively), but the associations were attenuated in the DWMHs group. In CASI, significant differences were identified in short-term memory, mental manipulation, abstract thinking, language, spatial construction, and name fluency in the PVWMHs group. However, DWMHs were only significantly correlated with abstract thinking and short-term memory. CONCLUSION: An inverse correlation existed between the Fazekas scale, predominantly in PVWMHs, and cognition in patients undergoing HD. The PVWMHs were associated with cognitive performance assessed by MMSE, MoCA, and CASI, as well as with subdomains of CASI such as memory, language and name fluency in patients undergoing HD.


An inverse correlation existed between the Fazekas scale and cognition in patients undergoing hemodialysis, predominantly in periventricular white matter hyperintensities.The periventricular white matter hyperintensities were associated with cognitive performance assessed by mini-mental status examination (MMSE), Montreal cognitive assessment (MoCA), cognitive abilities screening instrument (CASI), as well as with subdomains of CASI such as memory, language and name fluency in patients undergoing HD.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Cognition , Brain/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis , Magnetic Resonance Imaging , Renal Dialysis/adverse effects
4.
Insights Imaging ; 14(1): 161, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775600

ABSTRACT

OBJECTIVES: To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients. METHODS: The study included 160 acute ischemic stroke patients (male = 87, female = 73, median age = 73 years) with approval from the institutional review board. The patients had undergone CTP imaging, NIHSS and ASPECTS grading. convolutional neural network (CNN) model was trained to fit a raw AIF curve to a gamma variate function. CNN AIF was utilized to estimate the core and penumbra volumes which were further validated with clinical scores. RESULTS: Penumbra estimated by CNN AIF correlated positively with the NIHSS score (r = 0.69; p < 0.001) and negatively with the ASPECTS (r = - 0.43; p < 0.001). The CNN AIF estimated penumbra and core volume matching the patient symptoms, typically in patients with higher NIHSS (> 20) and lower ASPECT score (< 5). In group analysis, the median CBF < 20%, CBF < 30%, rCBF < 38%, Tmax > 10 s, Tmax > 10 s volumes were statistically significantly higher (p < .05). CONCLUSIONS: With inclusion of the CNN AIF in perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke. CRITICAL RELEVANCE STATEMENT: With CNN AIF perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke.

5.
Am J Obstet Gynecol ; 228(5S): S1241-S1245, 2023 05.
Article in English | MEDLINE | ID: mdl-36948996

ABSTRACT

Characterizing a labor pain-related neural signature is a key prerequisite for devising optimized pharmacologic and nonpharmacologic labor pain relief methods. The aim of this study was to describe the neural basis of labor pain and to provide a brief summary of how epidural anesthesia may affect pain-related neuronal activity during labor. Possible future directions are also highlighted. By taking advantage of functional magnetic resonance imaging, brain activation maps and functional neural networks of women during labor that have been recently characterized were compared between pregnant women who received epidural anesthesia and those who did not. In the subgroup of women who did not receive epidural anesthesia, labor-related pain elicited activations in a distributed brain network that included regions within the primary somatosensory cortex (postcentral gyrus and left parietal operculum cortex) and within the traditional pain network (lentiform nucleus, insula, and anterior cingulate gyrus). The activation maps of women who had been administered epidural anesthesia were found to be different-especially with respect to the postcentral gyrus, the insula, and the anterior cingulate gyrus. Parturients who received epidural anesthesia were also compared with those who did not in terms of functional connectivity from selected sensory and affective regions. When analyzing women who did not receive epidural anesthesia, marked bilateral connections from the postcentral gyrus to the superior parietal lobule, supplementary motor area, precentral gyrus, and the right anterior supramarginal gyrus were observed. In contrast, women who received epidural anesthesia showed fewer connections from the postcentral gyrus-being limited to the superior parietal lobule and supplementary motor area. Importantly, one of the most noticeable effects of epidural anesthesia was observed in the anterior cingulate cortex-a primary region that modulates pain perception. The increased outgoing connectivity from the anterior cingulate cortex in women who received epidural anesthesia indicates that the cognitive control exerted by this area might play a major role in the relief from labor pain. These findings not only affirmed the existence of a brain signature for pain experienced during labor, but they also showed that this signature can be altered by the administration of epidural anesthesia. This finding raises a question about the extent to which the cingulo-frontal cortex may exert top-down influences to gate women's experiences of labor-related pain. Because the anterior cingulate cortex is also involved in the processing and modulation of emotional content, such as fear and anxiety, a related question is about the extent to which the use of epidural anesthesia can affect different components of pain perception. Finally, inhibition of anterior cingulate cortex neurons may represent a potential new therapeutic target for alleviating labor-associated pain.


Subject(s)
Labor Pain , Pregnancy , Humans , Female , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging/methods , Neurons , Brain Mapping
6.
Oral Radiol ; 39(1): 220-224, 2023 01.
Article in English | MEDLINE | ID: mdl-36002688

ABSTRACT

An ameloblastic fibroma with formation of dental hard tissues, which the classical name is ameloblastic fibro-odontoma (AFO), is a rare type of mixed odontogenic tumor. An 8-year-old boy was diagnosed with AFO, with an inhomogeneous high signal within the lesion shown by T2-weighted magnetic resonance imaging (MRI). Computed tomography (CT) imaging revealed a unilocular low CT value area of 24 × 19 × 26 mm with buccolingual bony expansion and cortical bone thinning on the left side of the mandible including the crown of the mandibular left second molar. In addition, multiple calcified bodies were detected within the lesion, one of which had a CT value of approximately 2200 HU, equivalent to that of enamel. MRI indicated the lesion to be sized 24 × 19 × 25 mm along with buccolingual bony expansion in the left side of the mandible. Additionally, the lesion showed an internal inhomogeneous high signal, while a portion had an especially high signal in T2-weighted images. That particularly high signal area coincided with the nodular growth area of mucus-rich mesenchymal components without the epithelial component in histopathology findings. The particularly high signal revealed by T2-weighted imaging could be attributed to the mucus-rich component. MRI was found useful for revealing differences in the internal histopathological properties of an AFO in our patient.


Subject(s)
Fibroma , Mandibular Neoplasms , Odontogenic Tumors , Odontoma , Male , Humans , Child , Mandibular Neoplasms/diagnostic imaging , Mandibular Neoplasms/pathology , Odontogenic Tumors/diagnostic imaging , Odontoma/diagnostic imaging , Odontoma/pathology , Mandible/pathology , Magnetic Resonance Imaging
7.
Front Neurol ; 13: 979500, 2022.
Article in English | MEDLINE | ID: mdl-36438959

ABSTRACT

Introduction: The treatment effect of bright light therapy (BLT) on major depressive disorder (MDD) has been proven, but the underlying mechanism remains unclear. Neuroimaging biomarkers regarding disease alterations in MDD and treatment response are rarely focused on BLT. This study aimed to identify the modulatory mechanism of BLT in MDD using resting-state functional magnetic resonance imaging (rfMRI). Materials and methods: This double-blind, randomized controlled clinical trial included a dim red light (dRL) control group and a BLT experimental group. All participants received light therapy for 30 min every morning for 4 weeks. The assessment of the Hamilton Depression Rating Scale-24 (HAMD-24) and brain MRI exam were performed at the baseline and the 4-week endpoint. The four networks in interest, including the default mode network (DMN), frontoparietal network (FPN), salience network (SN), and sensorimotor network (SMN), were analyzed. Between-group differences of the change in these four networks were evaluated. Results: There were 22 and 21 participants in the BLT and dRL groups, respectively. Age, sex, years of education, baseline severity, and improvement in depressive symptoms were not significantly different between the two groups. The baseline rfMRI data did not show any significant functional connectivity differences within the DMN, FPN, SN, and SMN between the two groups. Compared with the dRL group, the BTL group showed significantly increased functional connectivity after treatment within the DMN, FPN, SN, and SMN. Graph analysis of the BLT group demonstrated an enhancement of betweenness centrality and global efficiency. Conclusion: BLT can enhance intra-network functional connectivity in the DMN, FPN, SN, and SMN for MDD patients. Furthermore, BLT improves the information processing of the whole brain. Clinical trial registration: The ClinicalTrials.gov identifier was NCT03941301.

8.
Article in English | MEDLINE | ID: mdl-36231728

ABSTRACT

This double-blind, randomized controlled trial assessed bright light therapy (BLT) augmentation efficacy compared with placebo light in treating non-seasonal major depressive disorder. The study participants belonged to a subtropical area (24.5°-25.5°N) with extensive daylight and included outpatients who had received stable dosages and various regimens of antidepressive agents for 4 weeks before enrollment. The outcomes were the 17-item Hamilton Depression Rating Scale, Montgomery-Asberg Depression Rating Scale, and Patient Health Questionnaire-9, which were assessed at weeks 1, 2, and 4. A total of 43 participants (mean age 45 years, ranging from 22-81) were randomized into the BLT [n = 22] and placebo light groups [n = 21]. After a 4-week administration of morning light therapy (30 min/day), depressive symptoms did not reduce significantly, which might be due to the small sample size. Nonetheless, this study had some strengths because it was conducted in warmer climates, unlike other studies, and examined diverse Asians with depression. Our findings suggest that several factors, such as poor drug response, different antidepressive regimens, duration of BLT, and daylength variability (i.e., natural daylight in the environment) may influence the utility of add-on BLT. Researchers may consider these important factors for future non-seasonal depression studies in subtropical environments.


Subject(s)
Depressive Disorder, Major , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/diagnosis , Double-Blind Method , Humans , Middle Aged , Phototherapy , Treatment Outcome
10.
Brain Sci ; 12(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35625020

ABSTRACT

This study investigated the role of working memory capacity (WMC) in metaphoric and metonymic processing in Mandarin-English bilinguals' minds. It also explored the neural correlations between metaphor and metonymy computations. We adopted an event-related functional magnetic resonance imaging (fMRI) design, which consisted of 21 English dialogic sets of stimuli and 5 conditions: systematic literal, circumstantial literal, metaphor, systematic metonymy, and circumstantial metonymy, all contextualized in daily conversations. Similar fronto-temporal networks were found for the figurative language processing patterns: the superior temporal gyrus (STG) for metaphorical comprehension, and the inferior parietal junction (IPJ) for metonymic processing. Consistent brain regions have been identified in previous studies in the homologue right hemisphere of better WMC bilinguals. The degree to which bilateral strategies that bilinguals with better WMC or larger vocabulary size resort to is differently modulated by subtypes of metonymies. In particular, when processing circumstantial metonymy, the cuneus (where putamen is contained) is activated as higher-span bilinguals filter out irrelevant information, resorting to inhibitory control use. Cingulate gyrus activation has also been revealed in better WMC bilinguals, reflecting their mental flexibility to adopt the subjective perspective of critical figurative items with self-control. It is hoped that this research provides a better understanding of Mandarin-English bilinguals' English metaphoric and metonymic processing in Taiwan.

11.
Neurology ; 98(22): e2245-e2257, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35410909

ABSTRACT

BACKGROUND AND OBJECTIVES: Most primary progressive aphasia (PPA) literature is based on English language users. Linguistic features that vary from English, such as logographic writing systems, are underinvestigated. The current study characterized the dysgraphia phenotypes of patients with PPA who write in Chinese and investigated their diagnostic utility in classifying PPA variants. METHODS: This study recruited 40 participants with PPA and 20 cognitively normal participants from San Francisco, Hong Kong, and Taiwan. We measured dictation accuracy using the Chinese Language Assessment for PPA (CLAP) 60-character orthographic dictation test and examined the occurrence of various writing errors across the study groups. We also performed voxel-based morphometry analysis to identify the gray matter regions correlated with dictation accuracy and prevalence of writing errors. RESULTS: All PPA groups produced significantly less accurate writing responses than the control group and no significant differences in dictation accuracy were noted among the PPA variants. With a cut score of 36 out of 60 in the CLAP orthographic dictation task, the test achieved sensitivity and specificity of 90% and 95% in identifying Chinese participants with PPA vs controls. In addition to a character frequency effect, dictation accuracy was affected by homophone density and the number of strokes in semantic variant PPA and logopenic variant PPA groups. Dictation accuracy was correlated with volumetric changes over left ventral temporal cortices, regions known to be critical for orthographic long-term memory. Individuals with semantic variant PPA frequently presented with phonologically plausible errors at lexical level, patients with logopenic variant PPA showed higher preponderance towards visual and stroke errors, and patients with nonfluent/agrammatic variant PPA commonly exhibited compound word and radical errors. The prevalence of phonologically plausible, visual, and compound word errors was negatively correlated with cortical volume over the bilateral temporal regions, left temporo-occipital area, and bilateral orbitofrontal gyri, respectively. DISCUSSION: The findings demonstrate the potential role of the orthographic dictation task as a screening tool and PPA classification indicator in Chinese language users. Each PPA variant had specific Chinese dysgraphia phenotypes that vary from those previously reported in English-speaking patients with PPA, highlighting the importance of language diversity in PPA.


Subject(s)
Agraphia , Aphasia, Primary Progressive , Primary Progressive Nonfluent Aphasia , Agraphia/diagnosis , Agraphia/etiology , Aphasia, Primary Progressive/diagnostic imaging , China , Humans , Language , Phenotype
12.
Front Hum Neurosci ; 16: 786853, 2022.
Article in English | MEDLINE | ID: mdl-35308607

ABSTRACT

This study employs fMRI to examine the neural substrates of response to cognitive training in healthy old adults. Twenty Japanese healthy elders participated in a 4-week program and practiced a verbal articulation task on a daily basis. Functional connectivity analysis revealed that in comparison to age- and education-matched controls, elders who received the cognitive training demonstrated increased connectivity in the frontotemporal regions related with language and memory functions and showed significant correlations between the behavioral change in a linguistic task and connectivity in regions for goal-oriented persistence and lexical processing. The increased hippocampal connectivity was consistent with previous research showing efficacious memory improvement and change in hippocampal functioning. Moreover, the increased intra-network connectivity following cognitive training suggested an improved neural differentiation, in contrast to the inter-network activation pattern typical in the aging brain. This research not only validates the relationship of functional change in the frontal and temporal lobes to age-associated cognitive decline but also shows promise in turning neural change toward the right direction by cognitive training.

13.
Med Phys ; 49(4): 2475-2485, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35098544

ABSTRACT

PURPOSE: Perfusion parameters such as cerebral blood flow (CBF) and Tmax have been proven to be useful in the diagnosis and prognosis for ischemic stroke. Arterial input function (AIF) is required as an input to estimate perfusion parameters. This makes the AIF selection paradigm of clinical importance. METHODS: This study proposes a new technique to address the problem of AIF selection, based on a variational segmentation model that combines geometric constraint in a distance function. The modified model uses discrete total variation in the distance term and via minimizing energy locates the arterial regions. Matrix analysis is utilized to identify the AIF with maximum peak height within the segmented region. RESULTS: Group mean differences indicate that overall the AIF selected by the purposed method has better arterial features of higher peak position (16.7 and 26.1 a.u.) and fast attenuation (1.08 s and 0.9 s) as compared to the other state-of-the-art methods. Utilizing the selected AIF, mean CBF, and Tmax values were estimated higher than the traditional methods. Ischemic regions were precisely located through the perfusion maps. CONCLUSIONS: This AIF segmentation framework worked on perfusion images at levels superior to the current clinical state of the art. Consequently, the perfusion parameters derived from AIF selected by the purposed method were more accurate and reliable. The proposed method could potentially be considered as part of the calculation for perfusion imaging in general.


Subject(s)
Ischemic Stroke , Stroke , Algorithms , Arteries , Cerebrovascular Circulation/physiology , Contrast Media , Humans , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging
14.
Acta Neurol Taiwan ; 29(3): 79-85, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32996115

ABSTRACT

PURPOSE: MR perfusion weighted imaging (PWI) has been used as sensitive indicator of tissue at risk for infarction. Quantitative perfusion parameters such as cerebral blood flow (CBF), mean transit time (MTT) and cerebral blood volume (CBV) can be obtained from post processing of PWI data using standard singular value decomposition algorithm (SVD). Assumption regarding absence of arterial - tissue delay (ATD) used in SVD algorithm results in underestimation of perfusion parameters. To estimate accurate values for perfusion parameters it is important to understand the mathematical framework behind SVD and improved SVD algorithms (bSVD and rSVD). METHOD: This study explains the mathematical framework of SVD and improved SVD algorithms and uses computational techniques that use bSVD algorithm to obtain perfusion parameters maps of CBF, CBV and MTT for acute stroke patient. RESULT: Computational techniques based on mathematical deconvolution algorithms are used to post process CBV, CBF and MTT maps where decrease in CBF and CBV were seen in left hemisphere. CONCLUSION: The bSVD algorithm is found to be sensitive to ATD and provides more accurate estimates of perfusion parameters than the SVD algorithm, however CBF estimates from bSVD and rSVD still remain influenced by other artifacts Keywords: PWI = perfusion weighted imaging, CBF= cerebral blood flow, MTT = mean transit time, CBV= cerebral blood volume, SVD = singular value decomposition algorithm.


Subject(s)
Algorithms , Cerebrovascular Circulation , Humans , Stroke/diagnostic imaging
15.
Brain Imaging Behav ; 14(6): 2647-2658, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31900889

ABSTRACT

This study used functional magnetic resonance imaging to explore the neural networks of pain during labor and its relief. It was hypothesized that epidural analgesia would affect the neural activities and the underlying network connectivity. Analysis using dynamic causal modelling and functional connectivity was performed to investigate the spatial activity and network connection of labor pain with and without epidural analgesia. This Institutional Review Board approved study acquired Magnetic Resonance Imaging from 15 healthy women of spontaneous normal delivery (with/without epidural analgesia = 7/8, aged 29.6 ± 2.3 and 29.3 ± 4.8 years old respectively) using a 1.5 Tesla scanner. Numerical rating score of pain was evaluated by a research nurse in the beginning of the first stage of labor and approximately 30 min after imaging examination. Six regions of interested from the activated clusters and literature were selected for dynamic causal modelling, which included primary and secondary somatosensory cortex, middle frontal gyrus, anterior cingulate cortex, insula and lentiform. Functional connectivity was calculated from selected sensory and affective regions. All analyses were performed by using software of statistical parametric mapping version 8 and CONN functional connectivity toolbox. The result showed that the experience of labor pain can lead to activations within a distributed brain network. The pain relief from epidural analgesia can be accompanied with altered functional connectivity, which was most evident in the cingulo-frontal system. The present study, therefore, provides an overview of a pain-related neural network that occur during labor and upon epidural analgesia.


Subject(s)
Analgesia, Epidural , Adult , Analgesia, Obstetrical , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Pain Measurement , Pregnancy
16.
Brain Imaging Behav ; 14(5): 1638-1650, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30937828

ABSTRACT

Executive dysfunctions are common in individuals with Traumatic Brain Injury (TBI). However, change in functional neural coupling of default and executive networks in the post-acute phase (≥ 1 month after injury) patients over time has yet to be understood. During a 5-week observation period, we examined changes in the goal-oriented executive function networks in 20 TBI participants, using a face/scene matching 1-back fMRI task (Chen et al. 2011). We conducted multivariate pattern analysis to assess working memory and visual selective attention, followed by a repeat-measures ANOVA to examine longitudinal changes, with a cluster FDR at p = .001. Results showed that task accuracy significantly improved after follow-up. Significantly increased activity patterns over time were observed in the right dorsolateral prefrontal cortex and right insula. Decreased activity patterns were seen in the left posterior cingulate cortex (PCC), bilateral precuneus, right inferior occipital gyrus and right temporo-occipital junction. Improvement in task accuracy correlated with decreased activity patterns in the PCC (r = -0.478, p = 0.031) and temporo-occipital junction (r = -0.592, p = 0.006), which were interpreted as neural plastic changes. However, we did not observe the default mode network (DMN)-executive network decoupling during task performance that is found in other studies. These results suggest that fMRI of attentional task performance could serve as a potential biomarker for neural plasticity of selective attention in TBI patients in the post-acute phase.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Attention , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Brain Mapping , Default Mode Network , Humans , Nerve Net , Neuronal Plasticity
17.
J Vis Exp ; (147)2019 05 09.
Article in English | MEDLINE | ID: mdl-31132039

ABSTRACT

The confounding factors of unexpectedness and semantic integration difficulty naturally residing in anomalous sentences in language studies make it difficult to determine the underlying processing mechanism of ERP components. Unlike the traditional static approach of manipulating expectancy through corpus frequency or cloze probability, this protocol proposes a dynamic method to enhance participants' expectancy for rarely-met anomalous sentences by multiple repetitions while maintaining their semantic integration difficulties. To address the time cost increase resulting from multiple repetitions, this protocol proposes to repeat only the strictly simplified core structure extracted from the anomalous sentence before presenting the semantically enriched, much more informative complete anomalous sentence containing the anomalous core structure to reinitiate the semantic integration processing. The complete anomalous sentence elicited a P600 effect. It suggests that the participants did not give up processing the anomalous information after repetitions and the same semantic integration difficulty was successfully reinitiated. Importantly, the representative experimental results reveal that the greatly attenuated N400 effect caused by multiple repetitions was not recovered by the follow-up reinitiated semantic integration difficulty. It suggests that the attenuated N400 effect should be mainly attributed to the enhancement of expectancy for anomalous information by multiple repetitions. The experimental results show that this method can effectively enhance participants' expectancy for anomalous sentences while retaining the semantic integration difficulty.


Subject(s)
Evoked Potentials/physiology , Language , Adult , Electrodes , Electroencephalography , Electrophysiological Phenomena , Female , Humans , Male , Photic Stimulation
18.
Neuroreport ; 29(16): 1341-1348, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30096130

ABSTRACT

It remains an open question whether the amplitude of N400 reflects combinatory postlexical semantic integration processing. To examine the issue, we repeatedly presented strictly simplified, N400-eliciting three-word structures for seven times, mixed with their plausible counterparts, followed immediately by a much more enriched and informative sentence containing two keywords of the incongruous structure, for the purpose of reinitiating semantic integration processing. Event-related potentials were recorded and compared at the first, fourth, seventh, and eighth time. It was found that multiple repetitions attenuated the N400 effect to almost nonexistent and that the follow-up semantic integration reinitiating sentence did not recover N400 amplitude. The results suggest that combinatory postlexical semantic integration does not significantly modulate N400 amplitude, and provide evidence for noncombinatory processes underlying N400 such as automatic spreading activation and expectancy/prediction.


Subject(s)
Evoked Potentials/physiology , Perceptual Masking/physiology , Semantics , Adolescent , Adult , Analysis of Variance , Electroencephalography , Female , Humans , Judgment/physiology , Male , Photic Stimulation , Reaction Time/physiology , Young Adult
19.
Hum Brain Mapp ; 35(7): 3132-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24129926

ABSTRACT

Neurofibrillary tangles are associated with cognitive dysfunction, and hippocampal atrophy with increased CSF tau markers. However, the plasma tau levels of Alzheimer's disease (AD) have not been well studied. We investigated plasma tau by using an immunomagnetic reduction assay in 20 patients with mild cognitive impairment (MCI) due to AD, 10 early AD dementia, and 30 healthy elders (HE). All received a 3D-brain MRI scan and a set of cognitive function test. We explored their relationships with both brain structure and cognitive functions. Images were analyzed to determine the brain volumes and gray matter densities. Patients with MCI or early AD had significantly increased plasma tau levels compared with HE. Plasma tau levels were negatively associated with the performance of logical memory, visual reproduction, and verbal fluency; also negatively associated with volume of total gray matter, hippocampus, amygdala; and gray matter densities of various regions. Regression analyses indicated that logical memory explained 0.394 and hippocampus volume predicted .608 of the variance of plasma tau levels, both P < 0.001. Education years were negatively associated with the gray matter densities of the supramarginal (r = -0.407), middle temporal gyrus (r = -0.40) and precuneus (r = -0.377; all P < 0.05) in HE; and negatively associated with plasma tau levels in patients (r = -0.626). We propose that plasma tau may serve as a window to both structure and function of the brain. Higher education is a protective factor against AD and is associated with lower plasma tau levels in patients.


Subject(s)
Alzheimer Disease , Brain/pathology , Cognitive Dysfunction , Memory Disorders/etiology , tau Proteins/blood , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/complications , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Cognitive Dysfunction/blood , Cognitive Dysfunction/complications , Cognitive Dysfunction/pathology , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Nanoparticles , Neuropsychological Tests , Regression Analysis
20.
Brain Connect ; 3(6): 547-62, 2013.
Article in English | MEDLINE | ID: mdl-24063289

ABSTRACT

The corpus callosum is the largest white matter fiber bundle connecting the two cerebral hemispheres. In this work, we investigate the effect of callosal dysgenesis on functional magnetic resonance imaging (fMRI) resting-state networks and the functional connectome. Since alternate commissural routes between the cerebral hemispheres exist, we hypothesize that bilateral cortical networks can still be maintained in partial or even complete agenesis of the corpus callosum (AgCC). However, since these commissural routes are frequently indirect, requiring polysynaptic pathways, we hypothesize that quantitative measurements of interhemispheric functional connectivity in bilateral networks will be reduced in AgCC compared with matched controls, especially in the most highly interconnected cortical regions that are the hubs of the connectome. Seventeen resting-state networks were extracted from fMRI of 11 subjects with partial or complete AgCC and 11 matched controls. The results show that the qualitative organization of resting-state networks is very similar between controls and AgCC. However, interhemispheric functional connectivity of precuneus, posterior cingulate cortex, and insular-opercular regions was significantly reduced in AgCC. The preserved network organization was confirmed with a connectomic analysis of the resting-state fMRI data, showing five functional modules that are largely consistent across the control and AgCC groups. Hence, the reduction or even complete absence of callosal connectivity does not affect the qualitative organization of bilateral resting-state networks or the modular organization of the functional connectome, although quantitatively reduced functional connectivity can be demonstrated by measurements within bilateral cortical hubs, supporting the hypothesis that indirect polysynaptic pathways are utilized to preserve interhemispheric temporal synchrony.


Subject(s)
Agenesis of Corpus Callosum/physiopathology , Cerebral Cortex/physiopathology , Connectome/methods , Adolescent , Adult , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/physiopathology , Oxygen/blood , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...