Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 12(6): 3092-3103, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35655842

ABSTRACT

Background: Fractional flow reserve derived from computed tomography (CT-FFR) can be used to noninvasively evaluate the functions of coronary arteries and has been widely welcomed in the field of cardiovascular research. However, whether different image reconstruction schemes have an effect on CT-FFR analysis through single- and multiple-cardiac periodic images in the same patient has not been investigated. Methods: This study retrospectively enrolled 122 patients who underwent 320-row computed tomography (CT) examination with both single- and multiple-cardiac periodic reconstruction schemes; a total of 366 coronary arteries were analyzed. The lowest CT-FFR values of each vessel and the poststenosis CT-FFR values of the lesion-specific coronary artery were measured using the two reconstruction techniques. The Wilcoxon signed-rank test was used to compare differences in CT-FFR values between the two reconstruction techniques. Spearman correlation analysis was performed to determine the relationship between CT-FFR values derived using the two methods. Bland-Altman and intraclass correlation coefficient (ICC) analyses were performed to evaluate the consistency of CT-FFR values. Results: In all blood vessels, the lowest CT-FFR values showed no significant differences between the two reconstruction techniques in the left anterior descending artery (LAD; P=0.65), left circumflex artery (LCx; P=0.46), or right coronary artery (RCA; P=0.22). In blood vessels with atherosclerotic plaques, the poststenosis CT-FFR values (2 cm distal to the maximum stenosis) exhibited no significant differences between the two reconstruction techniques in the LAD (P=0.78), LCx (P=1.00), or RCA (P=1.00). The mean CT-FFR values of single- and multiple-cardiac periodic images showed excellent correlation and minimal bias in all groups. Conclusions: CT-FFR analysis based on an artificial intelligence deep learning neural network is stable and not affected by the type of 320-row CT reconstruction technology.

2.
J Med Chem ; 56(14): 5797-805, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23786380

ABSTRACT

A new series of zinc(II) phthalocyanine derivatives have been synthesized and characterized. These macrocycles exhibited a sharp absorption band in the red visible region in DMF, which indicated that they were dissolved well and almost did not aggregate in this solvent. Compared with the unsubstituted zinc(II) phthalocyanine, all these phthalocyanines have a red-shifted Q-band (at 678-699 vs 670 nm) and exhibit a relatively weaker fluorescence emission and a higher efficiency at generating singlet oxygen. The monosubstituted photosensitizers also exhibit high photocytotoxicity toward HepG2 human hepatocarcinoma cells with IC50 values as low as 0.02-0.05 µM (λ = 670 nm, 80 mW·cm(-2), 1.5 J·cm(-2)). The high photodynamic activities of these compounds are in accordance with their low aggregation tendency and high cellular uptake. Their structure-activity relationship was assessed by determining the photophysical properties, cellular uptake, and in vitro photodynamic activities of this series of compounds. As shown by confocal microscopy, monosubstituted phthalocyanines can target the mitochondria and lysosomes of the cells, and tetrasubstituted phthalocyanines tend to target the lysosomes of the cells.


Subject(s)
Ethylene Glycols/chemical synthesis , Indoles/chemical synthesis , Organometallic Compounds/chemical synthesis , Photochemotherapy , Quinolines/chemical synthesis , Ethylene Glycols/pharmacology , Hep G2 Cells , Humans , Indoles/pharmacology , Isoindoles , Organometallic Compounds/pharmacology , Quinolines/pharmacology , Structure-Activity Relationship , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...