Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 152, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418954

ABSTRACT

BACKGROUND: Due to being rooted in the ground, maize (Zea mays L.) is unable to actively escape the attacks of herbivorous insects such as the Asian corn borer (Ostrinia furnacalis). In contrast to the passive damage, plants have evolved defense mechanisms to protect themselves from herbivores. Salicylic acid, a widely present endogenous hormone in plants, has been found to play an important role in inducing plant resistance to insects. In this study, we screened and identified the insect resistance gene SPI, which is simultaneously induced by SA and O. furnacalis feeding, through preliminary transcriptome data analysis. The functional validation of SPI was carried out using bioinformatics, RT-qPCR, and heterologous expression protein feeding assays. RESULTS: Both SA and O. furnacalis treatment increased the expression abundance of SA-synthesis pathway genes and SPI in three maize strains, and the upregulation of SPI was observed strongly at 6 hours post-treatment. The expression of SPI showed a temporal relationship with SA pathway genes, indicating that SPI is a downstream defense gene regulated by SA. Protein feeding assays using two different expression vectors demonstrated that the variation in SPI protein activity among different strains is mainly due to protein modifications. CONCLUSIONS: Our research results indicate that SPI, as a downstream defense gene regulated by SA, is induced by SA and participates in maize's insect resistance. The differential expression levels of SPI gene and protein modifications among different maize strains are one of the reasons for the variation in insect resistance. This study provides new insights into ecological pest control in maize and valuable insights into plant responses to SA-induced insect resistance.


Subject(s)
Moths , Zea mays , Animals , Zea mays/genetics , Zea mays/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Moths/genetics , Insecta , Transcriptome
2.
Ecotoxicol Environ Saf ; 249: 114390, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508787

ABSTRACT

Florpyrauxifen-benzyl is an herbicide that has been developed in recent years. Its degradation mode in paddy soil environments is not clear. In this study, the degradation dynamics in paddy soil and water were studied by ultrahigh-performance liquid chromatography. Microbial degradation was the main degradation pathway. Using third-generation high-throughput sequencing technology, the changes in the soil bacterial community structure were studied. After 30 days of application, compared with the control group (F0), the abundance of Sphingomonas, Lysobacter, and Flavisolibacter in the recommended and repeated application groups (F1, F5 and F10) increased significantly, and uncultured bacterium and Terrimonas decreased significantly. Compared with the F0 and F1 groups, the species diversity of the F0 and F1 groups showed a significant increase over time. The species diversity of the F5 and F10 groups decreased significantly on Days 5 and 15. On Day 30, the recovery even exceeded that of the control group. Luteimonas and five other genera were positively correlated with herbicide residues, and Pseudolabrys and two other genera were negatively correlated. Repeated application showed a significant effect on the structure of the soil bacterial community, mainly showing a trend of a significant decrease in the initial stage and gradual recovery in the later stage. The results will guide the safe and rational use of florpyrauxifen-benzyl and provide a scientific basis for florpyrauxifen-benzyl dynamic supervision of environmental pollution and protection of black soil in Northeast China.


Subject(s)
Herbicides , Oryza , Soil , Soil Microbiology , Bacteria/genetics , China , Bacteroidetes , Herbicides/toxicity
3.
Sci Rep ; 12(1): 6971, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484383

ABSTRACT

Anaerobic digestion technology mitigates agricultural organic waste pollution, thereby alleviating the energy crisis. Biochar materials increase the utilisation rate of biomass resources and promote the enrichment and growth of microorganisms. Biochar is an effective exogenous additive that stabilises the anaerobic digestion, improves anaerobic digestion efficiency and gas production. Herein, biochar materials were prepared from rice straw utilising the sequencing batch anaerobic digestion process. The biochar microstructure was characterised by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, and microbial succession and metabolic pathways were analysed using 16S rRNA sequencing to reveal the molecular mechanisms. Rice straw biochar addition increased gas production during anaerobic fermentation. SEM revealed that numerous cocci and microbacteria became agglomerated and attached to the surface and pores of biochar, which was revealed by BET analysis to be a good habitat for microorganisms. After anaerobic digestion, the specific surface area and total pore volume of biochar decreased. 16S rRNA gene sequencing showed that biochar affected the abundance of certain bacteria and archaea. Biochar had no obvious effect on the function of bacterial flora but inhibited carbohydrate metabolism by bacteria and glycan biosynthesis and metabolism by archaea in the anaerobic fermentation system while promoting lipid metabolism by archaea. Biochar addition inhibited acetic acid production in the anaerobic fermentation system and promoted methane production based on hydrogen and carbon dioxide levels.


Subject(s)
Euryarchaeota , Oryza , Anaerobiosis , Archaea/genetics , Bacteria/genetics , Charcoal , RNA, Ribosomal, 16S/genetics
4.
Microorganisms ; 9(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34576727

ABSTRACT

Atrazine is a long residual herbicide commonly used in maize fields. Although atrazine can effectively control weeds and improve crop yield, long-term application leads to continuous pollution in the agricultural ecological environment, especially in the soil ecosystem, and its impact on soil microorganisms is still not clear. Four methods were used in the experiment to clarify the effect of atrazine on the bacterial populations of cultivated soil layers of chernozem in a cold region in different periods: high-performance liquid chromatography (HPLC), colorimetry, microplate, and high-throughput sequencing. The level of residual atrazine in cold chernozem decreased from 4.645 to 0.077 mg/kg soil over time, and the residue gradually leached into deep soil and then decreased after accumulating to a maximum value. Atrazine significantly affected the activities of urease and polyphenol oxidase activity in the soil layers at different periods but had no significant effect on sucrase and phosphatase activity. Atrazine significantly reduced the diversity of microbial carbon source utilization and total activity in soil layers of 0-10 and 20-30 cm but only reduced the diversity of microbial carbon source utilization in the 10-20 cm layer. Atrazine had no significant effect on bacterial populations (10-12 phyla, 29-34 genera), but had a slight effect on the relative abundance of various groups. Atrazine significantly reduced the diversity of bacterial populations in cultivated soil layers of chernozem in a cold region, and the diversity of bacterial populations decreased with decreased residue. This lays a foundation for guiding the safe use of herbicides on farmland in Northeast China.

6.
Front Physiol ; 12: 663338, 2021.
Article in English | MEDLINE | ID: mdl-33935809

ABSTRACT

Rhopalosiphum padi (L.) (Hemiptera: Aphididae) is an important cosmopolitan pest in cereal crops. Reference genes can significantly affect qRT-PCR results. Therefore, selecting appropriate reference genes is a key prerequisite for qRT-PCR analyses. This study was conducted to identify suitable qRT-PCR reference genes in R. padi. We systematically analyzed the expression profiles of 11 commonly used reference genes. The ΔCt method, the BestKeeper, NormFinder, geNorm algorithms, and the RefFinder online tool were used to evaluate the suitability of these genes under diverse experimental conditions. The data indicated that the most appropriate sets of reference genes were ß-actin and GAPDH (for developmental stages), AK and TATA (for populations), RPS18 and RPL13 (for tissues), TATA and GAPDH (for wing dimorphism), EF-1α and RPS6 (for antibiotic treatments), GAPDH and ß-actin (for insecticide treatments), GAPDH, TATA, RPS18 (for starvation-induced stress), TATA, RPS6, and AK (for temperatures), and TATA and GAPDH (for all conditions). Our study findings, which revealed the reference genes suitable for various experimental conditions, will facilitate the standardization of qRT-PCR programs, while also improving the accuracy of qRT-PCR analyses, with implications for future research on R. padi gene functions.

7.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33770502

ABSTRACT

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Subject(s)
Hemiptera/genetics , Insect Proteins/metabolism , Solanum lycopersicum/genetics , Toxins, Biological/metabolism , Animals , Gene Transfer, Horizontal , Genes, Plant , Glucosides/chemistry , Glucosides/metabolism , Hemiptera/physiology , Herbivory , Insect Proteins/antagonists & inhibitors , Insect Proteins/classification , Insect Proteins/genetics , Intestinal Mucosa/metabolism , Solanum lycopersicum/metabolism , Malonyl Coenzyme A/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , Toxins, Biological/chemistry
8.
Front Physiol ; 12: 818210, 2021.
Article in English | MEDLINE | ID: mdl-35087425

ABSTRACT

Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.

9.
Proc Natl Acad Sci U S A ; 117(19): 10246-10253, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32327610

ABSTRACT

The evolution of insect resistance to pesticides poses a continuing threat to agriculture and human health. While much is known about the proximate molecular and biochemical mechanisms that confer resistance, far less is known about the regulation of the specific genes/gene families involved, particularly by trans-acting factors such as signal-regulated transcription factors. Here we resolve in fine detail the trans-regulation of CYP6CM1, a cytochrome P450 that confers resistance to neonicotinoid insecticides in the whitefly Bemisia tabaci, by the mitogen-activated protein kinase (MAPK)-directed activation of the transcription factor cAMP-response element binding protein (CREB). Reporter gene assays were used to identify the putative promoter of CYP6CM1, but no consistent polymorphisms were observed in the promoter of a resistant strain of B. tabaci (imidacloprid-resistant, IMR), which overexpresses this gene, compared to a susceptible strain (imidacloprid-susceptible, IMS). Investigation of potential trans-acting factors using in vitro and in vivo assays demonstrated that the bZIP transcription factor CREB directly regulates CYP6CM1 expression by binding to a cAMP-response element (CRE)-like site in the promoter of this gene. CREB is overexpressed in the IMR strain, and inhibitor, luciferase, and RNA interference assays revealed that a signaling pathway of MAPKs mediates the activation of CREB, and thus the increased expression of CYP6CM1, by phosphorylation-mediated signal transduction. Collectively, these results provide mechanistic insights into the regulation of xenobiotic responses in insects and implicate both the MAPK-signaling pathway and a transcription factor in the development of pesticide resistance.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cytochrome P-450 Enzyme System/metabolism , Drug Resistance/genetics , Gene Expression Regulation , Hemiptera/growth & development , Mitogen-Activated Protein Kinases/metabolism , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Cyclic AMP Response Element-Binding Protein/genetics , Cytochrome P-450 Enzyme System/genetics , Hemiptera/drug effects , Hemiptera/genetics , Hemiptera/metabolism , Insecticides/pharmacology , Mitogen-Activated Protein Kinases/genetics , Mutation , Phosphorylation , Promoter Regions, Genetic
10.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 560-568, 2020 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-32237549

ABSTRACT

In order to solve the problem of soil, water pollution and sensitive crop drug damage caused by chlorosulfuron residue, and to provide degradation strain resources for microbial remediation of contaminated soil, a chlorimuron-ethyl-degrading strain T9DB-01 was isolated from chlorosulfuron contaminated soil by the method of enrichment culture and step by step domestication. Strain T9DB-01 was identified as Pseudomonas sp. by morphological characteristics, physiological and biochemical analysis and 16S rDNA gene sequence analysis. The effects of temperature, pH value, substrate concentration, medium volume, and inoculation volume on the degradation of chlorsulfuron-methyl by strain T9DB-01 were investigated by single factor experiment. The degradation conditions of chlorosulfuron by strain T9DB-01 were optimized by orthogonal test and verification. Results show that 30 °C, pH 8.0, inoculum 4%, liquid volume 100 mL/250 mL, substrate concentration of 200 mg/L, cultured for 5 d, the strain degraded 93.7% chlorsulfuron-methyl. The degrading strain has certain application potential for bioremediation of chlorsulfuron-contaminated soil.


Subject(s)
Bacteria , Biodegradation, Environmental , Pyrimidines , Soil Microbiology , Soil Pollutants , Sulfonylurea Compounds , Bacteria/isolation & purification , Bacteria/metabolism , Hydrogen-Ion Concentration , Pyrimidines/metabolism , Soil Pollutants/metabolism , Sulfonylurea Compounds/metabolism , Temperature
11.
Int J Mol Sci ; 20(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600879

ABSTRACT

The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Genome-Wide Association Study , Hemiptera/enzymology , Hemiptera/genetics , Animals , Carboxylic Ester Hydrolases/metabolism , Gene Expression , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genome, Insect , Genome-Wide Association Study/methods , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Phylogeny , Transcriptome
12.
J Insect Sci ; 18(5)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30346622

ABSTRACT

Glutathione-S-transferases (GST) comprise a multifunctional protein superfamily, which plays important roles as detoxifiers and antioxidants in insects. The GST in Asian corn borer has not been previously characterized. In this study, we cloned, characterized, and expressed the complete GST genes from the midgut of Asian corn borer. Furthermore, we designed htL4440-OfGST vector to exploit this gene for RNA interference (RNAi) strategy to control this pest. A complete GST cDNA sequence in Asian corn borer was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends technology. The gene was 887bp in length and contained a 705bp open reading frame and 5' UTR and 3' UTR lengths of 89 and 93bp, respectively. The putative sequence encoded a putative 234 amino acid residue peptide and had a predicted molecular weight of ~26kDa. The GST protein of Asian corn borer is hydrophilic and may have a 30 amino acid signal peptide with a cleavage site between L30 and K31. A recombination vector pET28a-OfGST was constructed for purification and antibody preparation. Western blotting analysis showed that this protein reached the maximum expression level around 24 h in Asian corn borer larvae fed the plant toxin 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. A second vector, htL4440-OfGST, was constructed to generate the dsRNA of the GST gene. A larval feeding bioassay showed that the expressed dsRNA significantly reduced the detoxification ability of Asian corn borer larvae and increased mortality rate up to 54%. Our data indicated that GST plays very important roles in detoxifying in Asian corn borer and can be used as an RNAi method to control this pest in the field.


Subject(s)
Glutathione Transferase/genetics , Insect Control/methods , Insect Proteins/genetics , Moths/genetics , RNA Interference , Amino Acid Sequence , Animals , Base Sequence , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Moths/growth & development , Moths/metabolism , Phylogeny , RNA, Double-Stranded/genetics
13.
Front Physiol ; 8: 322, 2017.
Article in English | MEDLINE | ID: mdl-28588501

ABSTRACT

Sugar transporters (STs) play pivotal roles in the growth, development, and stress responses of phloem-sucking insects, such as the whitefly, Bemisia tabaci. In this study, 137 sugar transporters (STs) were identified based on analysis of the genome and transcriptome of B. tabaci MEAM1. B. tabaci MEAM1 encodes a larger number of STs than other selected insects. Phylogenetic and molecular evolution analysis showed that the 137 STs formed three expanded clades and that the genes in Sternorrhyncha expanded clades had accelerated rates of evolution. B. tabaci sugar transporters (BTSTs) were divided into three groups based on their expression profiles across developmental stages; however, no host-specific BTST was found in B. tabaci fed on different host plants. Feeding of B. tabaci adults with feeding diet containing dsRNA significantly reduced the transcript level of the target genes in B. tabaci and mortality was significantly improved in B. tabaci fed on dsRNA compared to the control, which indicates the sugar transporters may be used as potential RNAi targets for B. tabaci bio-control. These results provide a foundation for further studies of STs in B. tabaci.

14.
Int J Biol Sci ; 13(6): 735-747, 2017.
Article in English | MEDLINE | ID: mdl-28655999

ABSTRACT

The whitefly (Bemisia tabaci) is a cosmopolitan and devastating pest of agricultural crops and ornamentals. B. tabaci causes extensive damage by feeding on phloem and by transmitting plant viruses. Like many other organisms, insects depend on amino acid transporters (AATs) to transport amino acids into and out of its cells. We present a genome-wide and transcriptome-wide investigation of the following two families of AATs in B. tabaci biotype B: amino acid/auxin permease (AAAP) and amino acid/polyamine/organocation (APC). A total of 14 putative APCs and 25 putative AAAPs were identified, and a 10-paralog B. tabaci-specific expansion of AAAPs was found by maximum likelihood phylogeny. Detailed gene structure information revealed that 9 members of the B. tabaci-specific AAAP family expansion closely situated on a same scaffold. Expression profiling of the B. tabaci B APC and AAAP genes as affected by stage and plant host showed diverse expression patterns. The analysis of evolutionary rates indicated that purifying selection can explain the B. tabaci-specific AAAP expansion. RNA interference (RNAi)-mediated suppression of two AAAP genes (BtAAAP15 and BtAAAP21) significantly increased the mortality of B. tabaci B adults. The results provide a foundation for future functional analysis of APC and AAAP genes in B. tabaci.


Subject(s)
Amino Acid Transport Systems/metabolism , Hemiptera/metabolism , Amino Acid Transport Systems/genetics , Animals , Genome, Insect/genetics , Hemiptera/genetics , RNA Interference , Transcriptome/genetics
15.
Pestic Biochem Physiol ; 134: 73-78, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27914542

ABSTRACT

The whitefly, Bemisia tabaci, has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we assessed the level of cross-resistance, the activities of detoxifying enzymes, and the expression profiles of 23 glutathione S-transferase (GST) genes in a thiamethoxam-resistant ant and -susceptible strain of Bemisia tabaci Q. The thiamethoxam-resistant strain showed a moderate level of cross-resistance to another nicotinoid insecticide imidacloprid, a low level of cross-resistance to acetamiprid and nitenpyram, and no significant cross-resistance to abamectin and bifenthrin. Among detoxifying enzymes, only GSTs had significantly higher activity in the resistant strain than in the susceptible strain. Seven of 23 GST genes were over-expressed in the resistant strain relative to the susceptible strain. Using the technology of RNA interference to knockdown a GST gene (GST14), the results showed that silencing GST14 increased the mortality of whiteflies to thiamethoxam in Bemisia tabaci.


Subject(s)
Glutathione Transferase/genetics , Hemiptera , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/toxicity , Nitro Compounds/toxicity , Oxazines/toxicity , Thiazoles/toxicity , Animals , Carboxylesterase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Gene Expression , Glutathione Transferase/metabolism , Hemiptera/drug effects , Hemiptera/enzymology , Hemiptera/genetics , Insect Proteins/metabolism , Male , Neonicotinoids , RNA Interference , Thiamethoxam
16.
Pestic Biochem Physiol ; 132: 108-17, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27521921

ABSTRACT

The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted.


Subject(s)
Bacterial Proteins , Endotoxins , Hemolysin Proteins , Insect Proteins/metabolism , Insecticides , Moths/metabolism , Animals , Bacillus thuringiensis Toxins , Electrophoresis, Gel, Two-Dimensional , Gastrointestinal Tract , Insect Proteins/drug effects , Insecticide Resistance , Larva , Moths/drug effects , Proteomics/methods
17.
Int J Mol Sci ; 17(7)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27399679

ABSTRACT

The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.


Subject(s)
Diptera/genetics , Genes, Essential/genetics , Actins/genetics , Actins/metabolism , Animals , Diptera/growth & development , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Gene Expression/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Pesticides/toxicity , Real-Time Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Temperature
18.
Int J Mol Sci ; 17(3): 274, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26999122

ABSTRACT

Abamectin has been used to control the diamondback moth, Plutella xylostella (P. xylostella), which is a major agricultural pest that can rapidly develop resistance against insecticides including abamectin. Although cytochrome P450 has been confirmed to play an important role in resistance in P. xylostella, the specific P450 genes associated with the resistance are unclear. The full-length cDNA of the cytochrome P450 gene CYP340W1 was cloned and characterized in the present study. The cDNA assembly yielded a sequence of 1929 bp, containing the open reading frame (ORF) 1491 bp and encodes a 496-amino acid peptide. CYP340W1 was expressed in all P. xylostella developmental stages but its expression level was highest in larvae and especially in the heads of larvae. The expression of CYP340W1 was significantly higher in an abamectin-resistant strain (ABM-R) than in its susceptible counterpart (ABM-S). In addition, expression of CYP340W1 was increased when the ABM-R strain was exposed to abamectin. When injected into third-stage ABM-R larvae, CYP340W1 dsRNA significantly reduced CYP340W1 expression at 6 h and reduced expression by 83% at 12 h. As a consequence of RNAi, the mortality of the injected abamectin-resistant larvae increased after a 48-h exposure to abamectin. The results indicate that the overexpression of CYP340W1 plays an important role in abamectin resistance in P. xylostella.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Insect Proteins/metabolism , Ivermectin/analogs & derivatives , Moths/enzymology , Animals , Female , Insecticide Resistance , Ivermectin/metabolism , Ivermectin/toxicity , Larva/metabolism , Male , Moths/drug effects
19.
Sci Rep ; 6: 20245, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26833403

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was investigated. It was observed that the atrazine degradation rates with any addition level in mycorrhizal treatments were all significantly higher than those in non-mycorrhizal treatments. When atrazine was applied at 20 mg kg(-1), the removal efficiency was up to 74.65%. Therefore, G. mosseae can be considered as ideal inhabitants of technical installations to facilitate phytoremediation. Furthermore, a total of 10.4 Gb was used for de novo transcriptome assembly, resulting in a comprehensive data set for the identification of genes corresponding to atrazine stress in the AM association. After comparative analysis with edgeR, a total of 2,060 differential expressed genes were identified, including 570 up-regulated genes and 1490 down-regulated genes. After excluding 'function unknown' and 'general function predictions only' genes, 172 up-regulated genes were obtained. The differentially expressed genes in AM association with and without atrazine stress were associated with molecular processes/other proteins, zinc finger protein, intracellular/extracellular enzymes, structural proteins, anti-stress/anti-disease protein, electron transport-related protein, and plant growth associated protein. Our results not only prove AMF has important ecological significance on atrazine degradation but also provide evidence for the molecular mechanisms of atrazine degradation by AMF.


Subject(s)
Atrazine/pharmacology , Gene Expression Profiling , Glomeromycota , Herbicides/pharmacology , Medicago sativa/drug effects , Medicago sativa/genetics , Mycorrhizae , Stress, Physiological/genetics , Computational Biology/methods , Gene Expression Regulation, Plant , Gene Ontology , Molecular Sequence Annotation , Plant Roots/genetics , Plant Roots/microbiology , Reproducibility of Results , Transcriptome
20.
Sci Rep ; 5: 16500, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26560755

ABSTRACT

Corn defense systems against insect herbivory involve activation of genes that lead to metabolic reconfigurations to produce toxic compounds, proteinase inhibitors, oxidative enzymes, and behavior-modifying volatiles. Similar responses occur when the plant is exposed to methyl jasmonate (MeJA). To compare the defense responses between stalk borer feeding and exogenous MeJA on a transcriptional level, we employed deep transcriptome sequencing methods following Ostrinia furnacalis leaf feeding and MeJA leaf treatment. 39,636 genes were found to be differentially expressed with O. furnacalis feeding, MeJA application, and O. furnacalis feeding and MeJA application. Following Gene Ontology enrichment analysis of the up- or down- regulated genes, many were implicated in metabolic processes, stimuli-responsive catalytic activity, and transfer activity. Fifteen genes that indicated significant changes in the O. furnacalis feeding group: LOX1, ASN1, eIF3, DXS, AOS, TIM, LOX5, BBTI2, BBTI11, BBTI12, BBTI13, Cl-1B, TPS10, DOX, and A20/AN1 were found to almost all be involved in jasmonate defense signaling pathways. All of the data demonstrate that the jasmonate defense signal pathway is a major defense signaling pathways of Asian corn borer's defense against insect herbivory. The transcriptome data are publically available at NCBI SRA: SRS965087.


Subject(s)
Cyclopentanes/pharmacology , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Host-Parasite Interactions , Oxylipins/pharmacology , Signal Transduction/drug effects , Transcriptome , Zea mays/genetics , Alternative Splicing , Animals , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Insecta , Plant Leaves/genetics , Plant Leaves/parasitology , Polymorphism, Single Nucleotide , Reproducibility of Results , Zea mays/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...