Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-15717789

ABSTRACT

Wafer grinding extraction solution was passed through a supported liquid membrane (SLM) that contained PC88A (2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester) as a carrier, to separate gallium from arsenic by selective permeation. The SLM separation process was conducted under various conditions. The kind of membrane supporter, the pH of the feed, the feed concentration, and the HCl content in the strip governed the concentration of gallium and arsenic in the strip phase. The conditions determined as optimal in the laboratory test were used to perform the pilot test. Well separation between gallium and arsenic was performed in both laboratory and pilot tests. Hydrophobic membrane polytetrafluoroethylene (PTFE) with 0.2 microm pores was the best of three membrane supporters. The most efficient separation was obtained using an acidic feed (pH at 1.8) with 1000 ppm gallium. Over a 12-h period of stripping, the striped Ga concentration increased with the HCl concentration from 0.5 to 2.0 M and then leveled off. The recovery rate in the pilot test exceeded that on the laboratory scale because the membrane area was greater. The pilot test yielded a high recovery percentage of gallium (at 91%) and a low recovery of arsenic (merely 1.3 ppm) in the strip over 72 h.


Subject(s)
Arsenic/isolation & purification , Gallium/isolation & purification , Water Pollutants/isolation & purification , Water Purification/methods , Hazardous Substances , Industry , Membranes, Artificial , Polytetrafluoroethylene
2.
Article in English | MEDLINE | ID: mdl-15478937

ABSTRACT

This work investigates the separation of gallium and arsenic from the wafer grinding extraction solution. The wafer grinding extraction solution was generated using hot and concentrated nitric acid. In this study, adsorption technology was employed to remove the toxic arsenic from the extraction solution. Ferric hydroxide was the adsorbent employed to adsorb arsenic. The effects of pH value, contact time, absorbent dosage, and chloride ion concentration on the efficiency of adsorption of gallium and arsenic were investigated. The optimal conditions for recovering gallium and removing arsenic were a raw pH of 0.2, a contact time of 6min and a ferric hydroxide concentration of 30.4g/L. Additionally, adding chloric ions reduces the residual percentage of gallium (ReGa) and the percentage of arsenic removed (RAs). Under these optimal conditions, ReGa and RAs are 100 and 80%, respectively.


Subject(s)
Arsenic/isolation & purification , Gallium/isolation & purification , Water Pollutants/isolation & purification , Adsorption , Ferric Compounds/chemistry , Hazardous Waste , Hydrogen-Ion Concentration , Manufactured Materials , Refuse Disposal , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...