Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
iScience ; 27(4): 109624, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38632984

ABSTRACT

Circular RNAs (circRNAs) play crucial biological functions in various tumors, including bladder cancer (BCa). However, the roles and underlying molecular mechanisms of circRNAs in the malignant proliferation of BCa are yet unknown. CircKDM1A was observed to be downregulated in BCa tissues and cells. Knockdown of circKDM1A promoted the proliferation of BCa cells and bladder xenograft growth, while the overexpression of circKDM1A exerts the opposite effect. The dual-luciferase reporter assay revealed that circKDM1A was directly bound to miR-889-3p, acting as its molecular sponge to downregulate CPEB3. In turn, the CPEB3 was bound to the CPE signal in p53 mRNA 3'UTR to stabilize its expression. Thus, circKDM1A-mediated CPEB3 downregulation inhibits the stability of p53 mRNA and promotes BCa malignant progression. In conclusion, circKDM1A functions as a tumor suppressor in the malignant proliferation of BCa via the miR-889-3p/CPEB3/p53 axis. CircKDM1A may be a potential prognostic biomarker and therapeutic target of BCa.

2.
J Control Release ; 365: 602-616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996055

ABSTRACT

Our previous studies have shown that miR-511-3p treatment has a beneficial effect in alleviating allergic airway inflammation. Here, we sought to explore its therapeutic potential in animal models and gain a deeper understanding of its therapeutic value for asthma. miR-511-3p knockout mice (miR-511-3p-/-) were generated by CRISPR/Cas and showed exacerbated airway hyper-responsiveness and Th2-associated allergic airway inflammation compared with wild-type (WT) mice after exposed to cockroach allergen. RNA nanoparticles with mannose decorated EV-miR-511-3p were also created by loading miR-511-3p mimics into the mannose decorated EVs with engineered RNA nanoparticle PRNA-3WJ (Man-EV-miR-511-3p). Intra-tracheal inhalation of Man-EV-miR-511-3p, which could effectively penetrate the airway mucus barrier and deliver functional miR-511-3p to lung macrophages, successfully reversed the increased airway inflammation observed in miR-511-3p-/- mice. Through microarray analysis, complement C3 (C3) was identified as one of the major targets of miR-511-3p. C3 was increased in LPS-treated macrophages but decreased after miR-511-3p treatment. Consistent with these findings, C3 expression was elevated in the lung macrophages of an asthma mouse model but decreased in mice treated with miR-511-3p. Further experiments, including miRNA-mRNA pulldown and luciferase reporter assays, confirmed that miR-511-3p directly binds to C3 and activates the C3 gene. Thus, miR-511-3p represents a promising therapeutic target for asthma, and RNA nanotechnology reprogrammed EVs are efficient carriers for miRNA delivery for disease treatment.


Subject(s)
Asthma , Exosomes , MicroRNAs , Humans , Animals , Mice , Mannose , Exosomes/metabolism , Asthma/genetics , Asthma/therapy , Asthma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/metabolism
3.
Mol Carcinog ; 63(3): 461-478, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38018692

ABSTRACT

Metabolic abnormalities are one of the important factors in bladder cancer (BCa) progression and microenvironmental disturbance. As an important product of purine metabolism, uric acid's (UA) role in BCa metabolism and immunotherapy remains unclear. In this study, we conducted a retrospective analysis of a cohort comprising 39 BCa patients treated with PD-1 and 169 patients who underwent radical cystectomy at Shanghai Tenth People's Hospital. Kaplan-Meier curves and Cox regression analysis showed that the prognosis of patients with high UA is worse (p = 0.007), and high UA is an independent risk factor for cancer specific survival in patients with BCa (p = 0.025). We established a hyperuricemia mouse model with BCa subcutaneous xenografts in vivo. The results revealed that the subcutaneous tumors of hyperuricemia mice had a greater weight and volume in comparison with the control group. Through flow cytometric analysis, the proportion of CD8+ and CD4+ T cells in these subcutaneous tumors was seen to decline significantly. We also evaluated the relationship of UA and BCa by muti-omic analysis. UA related genes were significantly increased in the CD8+ T cell of non-responders to immunotherapy by single-cell sequencing. An 11-gene UA related signature was constructed and the risk score negatively correlated with various immune cells and immune checkpoints. Finally, a nomogram was established using a UA related signature to forecast the survival rate of patients with BCa. Collectively, this study demonstrated that UA was an independent prognostic biomarker for BCa and was associated with worse immunotherapy response.


Subject(s)
Hyperuricemia , Urinary Bladder Neoplasms , Humans , Animals , Mice , Uric Acid , Multiomics , Retrospective Studies , China , Urinary Bladder Neoplasms/genetics , Tumor Microenvironment
4.
BMJ Glob Health ; 8(11)2023 11.
Article in English | MEDLINE | ID: mdl-37935520

ABSTRACT

INTRODUCTION: It is well known that influenza and other respiratory viruses are wintertime-seasonal in temperate regions. However, respiratory disease seasonality in the tropics is less well understood. In this study, we aimed to characterise the seasonality of influenza-like illness (ILI) and influenza virus in Ho Chi Minh City, Vietnam. METHODS: We monitored the daily number of ILI patients in 89 outpatient clinics from January 2010 to December 2019. We collected nasal swabs and tested for influenza from a subset of clinics from May 2012 to December 2019. We used spectral analysis to describe the periodic signals in the system. We evaluated the contribution of these periodic signals to predicting ILI and influenza patterns through lognormal and gamma hurdle models. RESULTS: During 10 years of community surveillance, 66 799 ILI reports were collected covering 2.9 million patient visits; 2604 nasal swabs were collected, 559 of which were PCR-positive for influenza virus. Both annual and nonannual cycles were detected in the ILI time series, with the annual cycle showing 8.9% lower ILI activity (95% CI 8.8% to 9.0%) from February 24 to May 15. Nonannual cycles had substantial explanatory power for ILI trends (ΔAIC=183) compared with all annual covariates (ΔAIC=263) in lognormal regression. Near-annual signals were observed for PCR-confirmed influenza but were not consistent over time or across influenza (sub)types. The explanatory power of climate factors for ILI and influenza virus trends was weak. CONCLUSION: Our study reveals a unique pattern of respiratory disease dynamics in a tropical setting influenced by both annual and nonannual drivers, with influenza dynamics showing near-annual periodicities. Timing of vaccination campaigns and hospital capacity planning may require a complex forecasting approach.


Subject(s)
Influenza, Human , Virus Diseases , Humans , Influenza, Human/epidemiology , Seasons , Time Factors , Vietnam/epidemiology
5.
BMC Med ; 21(1): 321, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620926

ABSTRACT

BACKGROUND: As we continue the fourth year of the COVID-19 epidemic, SARS-CoV-2 infections still cause high morbidity and mortality in the United States. During 2020-2022, COVID-19 was one of the leading causes of death in the United States and by far the leading cause among infectious diseases. Vaccination uptake remains low despite this being an effective burden reducing intervention. The development of COVID-19 therapeutics provides hope for mitigating severe clinical outcomes. This modeling study examines combined strategies of vaccination and treatment to reduce the burden of COVID-19 epidemics over the next decade. METHODS: We use a validated mathematical model to evaluate the reduction of incident cases, hospitalized cases, and deaths in the United States through 2033 under various levels of vaccination and treatment coverage. We assume that future seasonal transmission patterns for COVID-19 will be similar to those of influenza virus and account for the waning of infection-induced immunity and vaccine-induced immunity in a future with stable COVID-19 dynamics. Due to uncertainty in the duration of immunity following vaccination or infection, we consider three exponentially distributed waning rates, with means of 365 days (1 year), 548 days (1.5 years), and 730 days (2 years). We also consider treatment failure, including rebound frequency, as a possible treatment outcome. RESULTS: As expected, universal vaccination is projected to eliminate transmission and mortality. Under current treatment coverage (13.7%) and vaccination coverage (49%), averages of 81,000-164,600 annual reported deaths, depending on duration of immunity, are expected by the end of this decade. Annual mortality in the United States can be reduced below 50,000 per year with 52-80% annual vaccination coverage and below 10,000 annual deaths with 59-83% annual vaccination coverage, depending on duration of immunity. Universal treatment reduces hospitalizations by 88.6% and deaths by 93.1% under current vaccination coverage. A reduction in vaccination coverage requires a comparatively larger increase in treatment coverage in order for hospitalization and mortality levels to remain unchanged. CONCLUSIONS: Adopting universal vaccination and universal treatment goals in the United States will likely lead to a COVID-19 mortality burden below 50,000 deaths per year, a burden comparable to that of influenza virus.


Subject(s)
COVID-19 , Epidemics , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Vaccination Coverage
6.
medRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034752

ABSTRACT

Background: It is well known that influenza and other respiratory viruses are wintertime-seasonal in temperate regions. However, respiratory disease seasonality in the tropics remains elusive. In this study, we aimed to characterize the seasonality of influenza-like illness (ILI) and influenza virus in Ho Chi Minh City (HCMC), Vietnam. Methods: We monitored the daily number of ILI patients in 89 outpatient clinics from January 2010 to December 2019. We collected nasal swabs and tested for influenza from a subset of clinics from May 2012 to December 2019. We used spectral analysis to describe the periodicities in the system. We evaluated the contribution of these periodicities to predicting ILI and influenza patterns through lognormal and gamma hurdle models. Findings: During ten years of community surveillance, 66,799 ILI reports were collected covering 2.9 million patient visits; 2604 nasal swabs were collected 559 of which were PCR-positive for influenza virus. Both annual and nonannual cycles were detected in the ILI time series, with the annual cycle showing 8.9% lower ILI activity (95% CI: 8.8%-9.0%) from February 24 to May 15. Nonannual cycles had substantial explanatory power for ILI trends (ΔAIC = 183) compared to all annual covariates (ΔAIC = 263). Near-annual signals were observed for PCR-confirmed influenza but were not consistent along in time or across influenza (sub)types. Interpretation: Our study reveals a unique pattern of respiratory disease dynamics in a tropical setting influenced by both annual and nonannual drivers. Timing of vaccination campaigns and hospital capacity planning may require a complex forecasting approach.

7.
medRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798204

ABSTRACT

Background: As we enter the fourth year of the COVID-19 pandemic, SARS-CoV-2 infections still cause high morbidity and mortality in the United States. During 2020-2022, COVID-19 was one of the leading causes of death in the United States and by far the leading cause among infectious diseases. Vaccination uptake remains low despite this being an effective burden reducing intervention. The development of COVID-19 therapeutics provides hope for mitigating severe clinical outcomes. This modeling study examines combined strategies of vaccination and treatment to reduce the burden of COVID-19 epidemics over the next decade. Methods: We use a validated mathematical model to evaluate the reduction of incident cases, hospitalized cases, and deaths in the United States through 2033 under various levels of vaccination and treatment coverage. We assume that future seasonal transmission patterns for COVID-19 will be similar to those of influenza virus. We account for the waning of infection-induced immunity and vaccine-induced immunity in a future with stable COVID-19 dynamics. Due to uncertainty in the duration of immunity following vaccination or infection, we consider two exponentially-distributed waning rates, with means of 365 days (one year) and 548 days (1.5 years). We also consider treatment failure, including rebound frequency, as a possible treatment outcome. Results: As expected, universal vaccination is projected to eliminate transmission and mortality. Under current treatment coverage (13.7%) and vaccination coverage (49%), averages of 89,000 annual deaths (548-day waning) and 120,000 annual deaths (365-day waning) are expected by the end of this decade. Annual mortality in the United States can be reduced below 50,000 per year with >81% annual vaccination coverage, and below 10,000 annual deaths with >84% annual vaccination coverage. Universal treatment reduces hospitalizations by 88% and deaths by 93% under current vaccination coverage. A reduction in vaccination coverage requires a comparatively larger increase in treatment coverage in order for hospitalization and mortality levels to remain unchanged. Conclusions: Adopting universal vaccination and universal treatment goals in the United States will likely lead to a COVID-19 mortality burden below 50,000 deaths per year, a burden comparable to that of influenza virus.

8.
Heliyon ; 9(1): e13012, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704283

ABSTRACT

Recent evidence suggests that the human genitourinary microbiome plays a significant role in mediating the development and progression of urological tumors, including bladder cancer (BC). Clinicians widely recognize the role of Bacille Calmette Guérin (BCG), an attenuated Mycobacterium tuberculosis vaccine, in the management of intermediate- and high-risk NMIBC. However, compared to the large body of evidence on the gut microbiota and gastrointestinal tumors, limited information is available about the interaction between BC and the genitourinary microbiome. This is an expanding field that merits further investigation. Urologists will need to consider the potential impact of the microbiome in BC diagnosis, prevention of recurrence and progression, and treatment prospects in the future. This review highlights the approaches adopted for microbiome research and the findings and inadequacies of current research on BC.

9.
Biosens Bioelectron ; 222: 114982, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36493719

ABSTRACT

As a diagnostic biomarker, the detection of circular RNA (circRNA) is vital for the early screening of bladder cancer. Usually, the low abundance of circRNA in clinic samples results in the necessarily complicated extraction before detection. In this work, a tetrahedron supported CRISPR/Cas13a cleavage has been explored for direct electrochemical detection of circRNA in urine from bladder cancer. CRISPR/Cas13a system has been reasonably designed to recognize the characteristic back-splice junction site of circRNA. The activated CRISPR/Cas13a by circRNA can cleave uracil bases composed of DNA tetrahedron immobilized on the surface of gold electrode, resulting in the breakage of DNA tetrahedron and the release of electrochemical active molecule methylene blue. By virtue of highly catalytic efficiency of CRISPR/Cas13a and rigid structure of tetrahedron, the developed electrochemical biosensor can directly detect circRNA in 25 µL urine sample with the lowest detection limit of 0.089 fM and linear detection range from 10 fM to 50 nM in less than 10 min, so as to avoid complicated extraction process and benefit for on-site detection.


Subject(s)
Biosensing Techniques , Urinary Bladder Neoplasms , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Circular , Biosensing Techniques/methods , DNA , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , CRISPR-Cas Systems/genetics
10.
Plant Dis ; 107(6): 1883-1891, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36480737

ABSTRACT

Canna yellow streak virus (CaYSV) is a potyvirus that causes severe damage to the ornamental plant canna in the United Kingdom and Brazil. Here, we identified CaYSV in China by isolating total RNA from an infected plant, amplifying the virus genome segments, and cloning and sequencing the amplicons. After assembly, the full-length genome of the virus was obtained and uploaded to the NCBI database. Phylogenetic analysis results showed that the Guizhou isolate (OL546222) was most closely related to the KS isolate (MG545919.1). Virus detection is essential for virus disease control but the subclinical infection of CaYSV on canna in its early development increases the difficulty of CaYSV diagnosis. The goal of this study was to develop an efficient method for detection of CaYSV. We designed the primers, optimized the reaction conditions, and finally established a one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method. The product of RT-LAMP can be analyzed by both agarose gel electrophoresis and visible color change. The established one-step RT-LAMP assay showed high specificity and sensitivity in detecting CaYSV. This RT-LAMP method was also applied in analysis of 61 field samples collected from Guizhou and Jiangsu Provinces. The results showed that the infection rates of CaYSV on canna samples from these two provinces were very high (63 and 96% respectively).


Subject(s)
Potyvirus , Zingiberales , Phylogeny , Nucleic Acid Amplification Techniques/methods , Zingiberales/genetics
11.
Mol Carcinog ; 62(2): 185-199, 2023 02.
Article in English | MEDLINE | ID: mdl-36250643

ABSTRACT

The relationship between metabolism and immune microenvironment remains to be studied in bladder cancer (BCa). We aimed to construct a metabolic-associated signature for prognostic prediction and investigate its relationship with the immune microenvironment in BCa. The RNA expression of metabolism associated genes was obtained from a combined data set including The Cancer Genome Atlas, GSE48075, and GSE13507 to divide BCa patients into different clusters. A metabolic-associated signature was constructed using the differentially expressed genes between clusters in the combined data set and validated in the IMvigor210 trial and our center. The composition of tumor-infiltrating immune cells (TIICs) was evaluated using the single-sample Gene Set Variation Analysis. BCa patients in Cluster A or high-risk level were associated with advanced clinicopathological features and poor survival outcomes. The percentage of high-risk patients was significantly lower in patients responding to anti-PD-L1 treatment. Compared with low-risk patients, the IC50 values of cisplatin and gemcitabine were significantly lower in high-risk patients. Thiosulfate transferase (TST) and S100A16 were significantly associated with clinicopathological features and prognosis. Downregulation of TST promoted BCa cell invasion, migration, and epithelial-to-mesenchymal transition, which are inhibited by downregulation of S100A16. CD8 + T cells, neutrophils, and dendritic cells had higher infiltration in the TST low-level and the S100A16 high-level. Furthermore, loss of function TST and S100A16 significantly affected the expression of PD-L1 and CD47. The metabolic-associated signature can stratify BCa patients into distinct risk levels with different immunotherapeutic susceptibility and survival outcomes. Metabolism disorder promoted the dysregulation of immune microenvironment, thus contributing to immunosuppression.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Down-Regulation , Cisplatin , CD8-Positive T-Lymphocytes , Epithelial-Mesenchymal Transition , Tumor Microenvironment/genetics
12.
Aging Dis ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38270116

ABSTRACT

AAV-PHP.eB depends on endothelial cells to highly transduce the central nervous system (CNS) and is widely used for intravenous gene therapy. However, the transduction profile and therapeutic efficiency after endothelial cell injury such as ischemic stroke is largely unknown. In this study, we tested the transduction profiles of AAV-PHP.eB and developed intravenous NeuroD1 gene therapy to treat ischemic stroke in mice. We found that AAV-PHP.eB-GFP control virus crossed the BBB and infected brain cells efficiently in normal brain. However, after stroke, AAV-PHP.eB-GFP control virus was highly restricted in the blood vessels. Surprisingly, after switching to therapeutic vector AAV-PHP.eB-NeuroD1-GFP, the viral vector successfully crossed blood vessels and infected brain cells. Using Tie2-cre transgenic mice, we demonstrated that NeuroD1 regulated endothelial gene expression to modulate AAV-PHP.eB transduction. Following the changes of signaling pathways in endothelial cells, NeuroD1 effectively protected BBB integrity, attenuated neuroinflammation, inhibited neuron apoptosis and rescued motor deficits after ischemic stroke. Moreover, NeuroD1 over-expression in brain cells further promoted neural regeneration. These results indicate that intravenous gene therapy using AAV-PHP.eB for ischemic stroke differs from intracranial gene therapy and NeuroD1 intravenous delivery using AAV-PHP.eB efficiently rescue both vascular damage and neuronal loss, providing an advancing therapeutic treatment for stroke.

13.
Int J Biol Sci ; 18(14): 5459-5474, 2022.
Article in English | MEDLINE | ID: mdl-36147463

ABSTRACT

Background: Bladder cancer (BCa) is a prevalent urologic malignancy that shows a poor prognosis. Abnormal metabolism and its key genes play a critical role in BCa progression. In this study, the role played by PhosphoGlycerol Dehydrogenase (PHGDH), an important molecule of serine metabolism, was investigated with regard to the regulation of ferroptosis in BCa. Methods: The BCa tissues of 90 patients were analyzed by RNA-sequencing for differential pathways and genes. Western blot, qPCR, and IHC were used to determine PHGDH expression in the cell lines (in vitro) and patient tissues (in vivo). R software was used to analyze PHGDH expression, prognosis, and PHGDH+SLC7A11 score. The biological functions of PHGDH were examined through organoids, and in vitro and in vivo experiments. C11 probes, electron microscopy, and ferroptosis inhibitors/ inducers were used to detect cellular ferroptosis levels. Protein profiling, co-IP, and RIP assays were used to screen proteins that might bind to PHGDH. PHGDH-targeted inhibitor NCT-502 was used to evaluate its effect on BCa cells. Results: PHGDH was highly expressed in patients with BCa. Knock-down of PHGDH promoted ferroptosis, while the decreased proliferation of BCa cells. Additionally, PHGDH knock-down downregulated the expression of SLC7A11. Co-IP and mass spectrometry experiments indicate that PHGDH binds to PCBP2, an RNA-binding protein, and inhibits its ubiquitination degradation. PCBP2 in turn stabilizes SLC7A11 mRNA and increases its expression. NCT-502, a PHGDH inhibitor, promotes ferroptosis and inhibits tumor progression in BCa. The PHGDH+ SLC7A11 score was significantly correlated with patient prognosis. Conclusions: To conclude, the PHGDH, via interaction with PCBP2, upregulates SLC7A11 expression. This inhibits ferroptosis and promotes the malignant progression of BCA. The results of this study indicated that NCT-502 could serve as a therapeutic strategy for BCa.


Subject(s)
Ferroptosis , Phosphoglycerate Dehydrogenase/metabolism , Urinary Bladder Neoplasms , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Ferroptosis/genetics , Humans , Oxidoreductases/metabolism , RNA , RNA, Messenger , RNA-Binding Proteins , Serine , Urinary Bladder Neoplasms/metabolism
14.
Cell Biosci ; 12(1): 132, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986387

ABSTRACT

Urological cancers are common malignant cancers worldwide, with annually increasing morbidity and mortality rates. For decades, two-dimensional cell cultures and animal models have been widely used to study the development and underlying molecular mechanisms of urological cancers. However, they either fail to reflect cancer heterogeneity or are time-consuming and labour-intensive. The recent emergence of a three-dimensional culture model called organoid has the potential to overcome the shortcomings of traditional models. For example, organoids can recapitulate the histopathological and molecular diversity of original cancer and reflect the interaction between cancer and surrounding cells or stroma by simulating tumour microenvironments. Emerging evidence suggests that urine-derived organoids can be generated, which could be a novel non-invasive liquid biopsy method that provides new ideas for clinical precision therapy. However, the current research on organoids has encountered some bottlenecks, such as the lack of a standard culture process, the need to optimize the culture medium and the inability to completely simulate the immune system in vivo. Nonetheless, cell co-culture and organoid-on-a-chip have significant potential to solve these problems. In this review, the latest applications of organoids in drug screening, cancer origin investigation and combined single-cell sequencing are illustrated. Furthermore, the development and application of organoids in urological cancers and their challenges are summarised.

16.
Ther Adv Med Oncol ; 14: 17588359221108690, 2022.
Article in English | MEDLINE | ID: mdl-35782750

ABSTRACT

Background: The effect of gender on the prognosis of bladder cancer (BCa) in different metastatic sites is insufficiently understood. We aimed to assess the impact and potential mechanisms of a combination of gender dimorphism and BCa metastasis sites on the risk of death. Methods: Independent predictors of overall survival and cancer-specific survival were analyzed after stratification by gender and metastasis sites from the Surveillance, Epidemiology, and End Results database. Furthermore, gender-differentially expressed genes (DEGs) and function-enriched annotations for patients with lymph node metastasis (LNM) were identified from The Cancer Genome Atlas (TCGA) database. A gender-associated signature was constructed in TCGA and validated in the IMvigor210 trial, and the magnetic resonance imaging-based radiomics signature was developed in our center to predict the gender-associated signature. Results: In patients with metastatic BCa, the most common site of metastasis is bone in men and lung in women. Moreover, stratified by sex, LNM had a better prognosis in men than visceral metastasis, which was not observed in female. Similarly, stratified by the metastasis site, the prognosis of men in patients with LNM is better than that of women, which was not observed in visceral metastasis patients. Enrichment of DEGs between sexes in patients with LNM may be related to metastasis and tumor immunity, especially the role of neutrophils. Moreover, the gender-associated signature is related to the clinicopathological characteristics of patients, and patients in the high-risk group had worse survival outcomes, and higher susceptibility to cisplatin, docetaxel, camptothecin, and paclitaxel. A nomogram combined with the signature and clinical staging showed significant predictive power in survival prediction. Furthermore, patients with high radiomics scores had a strong tendency for high-risk group. Conclusion: These results may improve the understanding of the differences in tumor biology between sexes and thus provide additional evidence for individualized treatment in BCa.

17.
J Sci Food Agric ; 102(15): 7249-7258, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35731714

ABSTRACT

BACKGROUND: 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP) and 5-hydroxymethylfurfural (HMF) are two main enolization products in the Maillard reaction and found in some foodstuffs. For many years, whether they are functional or noxious to human health has been a matter of debate. Thus, insight into their formation pathways is important to manage Maillard reaction products. In this study, DDMP and HMF were quantified and compared with regard to their formation and degradation in the d-glucose and l-proline Maillard reaction models using different moisture contents (0, 0.1, 0.5, 1.0, and 4.0 mL) at 150 °C for various heating times. RESULTS: DDMP was predominantly generated in dry or low water-content heating models along with n increased 1-deoxyglucosone (1-DG) generation via 2,3-enolization. However, increasing moisture content resulted in a decay of reaction intensity, 1-DG, and DDMP due to a change in the reaction mechanism from 2,3-enolization to 1,2-enolization, which facilitated 3-deoxyglucosone (3-DG) and HMF formation. CONCLUSION: Increased moisture content in glucose-proline models reduced reaction intensity and also inhibited DDMP and facilitated HMF formation by promoting the pathway change from 2,3-enolization to 1,2-enolization to generate more 3-DG. A water content of 1.0 mL was identified as a critical value, from which the 1,2-enolization became a primary pathway occurring in the Maillard reaction. © 2022 Society of Chemical Industry.


Subject(s)
Glucose , Maillard Reaction , Humans , Glucose/chemistry , Proline , Hot Temperature , Water
18.
Oxid Med Cell Longev ; 2022: 8145173, 2022.
Article in English | MEDLINE | ID: mdl-35502209

ABSTRACT

Background: Mortality from noncancer causes in patients with prostate cancer (PCa) is unclear. This study assesses the causes and risks of noncancer death with each follow-up time period after PCa diagnosis. Methods: Data from the Surveillance, Epidemiology, and End Results (SEER) program were analyzed for noncancer causes of death in PCa patients from 2000 to 2016. The standard mortality ratio (SMR) was calculated for noncancer mortality. Results: Altogether, 752,352 patients with PCa were identified, and 180,862 (24.0%) died during follow-up. The largest proportion of deaths from noncancer causes (36%) occurred within 5 to 10 years after diagnosis. The most common causes of noncancer death are cardiovascular and cerebrovascular diseases and chronic obstructive pulmonary disease (COPD). Compared with the general age-matched male population, patients with PCa had a higher risk of death from any noncancer cause within 5 years, in particular other infectious diseases and suicide and self-inflicted injury. However, the risk of death from noncancer causes of PCa for more than 5 years is lower, except for Alzheimer's disease and hypertension from 5 to 10 years after diagnosis. In addition, the risk of death from noncancer causes was influenced by treatment, ethnicity, and staging differences. In particular, compared with the general population, many noncancer causes of death have higher risk of death in patients with or without treatment within 1 to 5 years after diagnosis, whereas patients undergoing radical prostatectomy (RP) with or without radiotherapy (RT) or chemotherapy (CTx) are not at high risk of death from COPD, pneumonia and influenza, nephritis, nephrotic syndrome and nephrosis, septicemia, and atherosclerosis. Conclusion: The risk of death from noncancer causes gradually decreased in all patients with PCa during each follow-up period after diagnosis In addition, the risk of dying from noncancer causes are influenced by differences in stage, ethnicity, and treatment. In particular, patients undergoing RP±RT/CTx and RT/CTx have a lower risk of death compared to the general population. These findings provide important implications for the healthcare management of patients with PCa.


Subject(s)
Communicable Diseases , Prostatic Neoplasms , Pulmonary Disease, Chronic Obstructive , Sepsis , Cause of Death , Child, Preschool , Humans , Male , Prostatic Neoplasms/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis
19.
JAMA Netw Open ; 5(5): e2214171, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35616938

ABSTRACT

Importance: In emergency epidemic and pandemic settings, public health agencies need to be able to measure the population-level attack rate, defined as the total percentage of the population infected thus far. During vaccination campaigns in such settings, public health agencies need to be able to assess how much the vaccination campaign is contributing to population immunity; specifically, the proportion of vaccines being administered to individuals who are already seropositive must be estimated. Objective: To estimate population-level immunity to SARS-CoV-2 through May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Design, Setting, and Participants: This observational case series assessed cases, hospitalizations, intensive care unit occupancy, ventilator occupancy, and deaths from March 1, 2020, to May 31, 2021, in Rhode Island, Massachusetts, and Connecticut. Data were analyzed from July 2021 to November 2021. Exposures: COVID-19-positive test result reported to state department of health. Main Outcomes and Measures: The main outcomes were statistical estimates, from a bayesian inference framework, of the percentage of individuals as of May 31, 2021, who were (1) previously infected and vaccinated, (2) previously uninfected and vaccinated, and (3) previously infected but not vaccinated. Results: At the state level, there were a total of 1 160 435 confirmed COVID-19 cases in Rhode Island, Massachusetts, and Connecticut. The median age among individuals with confirmed COVID-19 was 38 years. In autumn 2020, SARS-CoV-2 population immunity (equal to the attack rate at that point) in these states was less than 15%, setting the stage for a large epidemic wave during winter 2020 to 2021. Population immunity estimates for May 31, 2021, were 73.4% (95% credible interval [CrI], 72.9%-74.1%) for Rhode Island, 64.1% (95% CrI, 64.0%-64.4%) for Connecticut, and 66.3% (95% CrI, 65.9%-66.9%) for Massachusetts, indicating that more than 33% of residents in these states were fully susceptible to infection when the Delta variant began spreading in July 2021. Despite high vaccine coverage in these states, population immunity in summer 2021 was lower than planned owing to an estimated 34.1% (95% CrI, 32.9%-35.2%) of vaccines in Rhode Island, 24.6% (95% CrI, 24.3%-25.1%) of vaccines in Connecticut, and 27.6% (95% CrI, 26.8%-28.6%) of vaccines in Massachusetts being distributed to individuals who were already seropositive. Conclusions and Relevance: These findings suggest that future emergency-setting vaccination planning may have to prioritize high vaccine coverage over optimized vaccine distribution to ensure that sufficient levels of population immunity are reached during the course of an ongoing epidemic or pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , COVID-19/epidemiology , COVID-19 Vaccines/therapeutic use , Humans , Incidence , New England
20.
Research (Wash D C) ; 2022: 9826484, 2022.
Article in English | MEDLINE | ID: mdl-35474904

ABSTRACT

Evaluating tumor development is of great importance for clinic treatment and therapy. It has been known that the amounts of sialic acids on tumor cell membrane surface are closely associated with the degree of cancerization of the cell. So, in this work, cellular interface supported CRISPR/Cas trans-cleavage has been explored for electrochemical simultaneous detection of two types of sialic acids, i.e., N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Specifically, PbS quantum dot-labeled DNA modified by Neu5Gc antibody is prepared to specifically recognize Neu5Gc on the cell surface, followed by the binding of Neu5Ac through our fabricated CdS quantum dot-labeled DNA modified by Sambucus nigra agglutinin. Subsequently, the activated Cas12a indiscriminately cleaves DNA, resulting in the release of PbS and CdS quantum dots, both of which can be simultaneously detected by anodic stripping voltammetry. Consequently, Neu5Gc and Neu5Ac on cell surface can be quantitatively analyzed with the lowest detection limits of 1.12 cells/mL and 1.25 cells/mL, respectively. Therefore, a ratiometric electrochemical method can be constructed for kinetic study of the expression and hydrolysis of Neu5Gc and Neu5Ac on cell surface, which can be further used as a tool to identify bladder cancer cells at different development stages. Our method to evaluate tumor development is simple and easy to be operated, so it can be potentially applied for the detection of tumor occurrence and development in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...