Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 18539-18549, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859007

ABSTRACT

We present a nonlinear amplifying loop mirror-based mode-locked fiber laser. By adjusting the pump power, the proposed laser exhibits a dissipative soliton resonance (DSR)-like pulse operation with a maximum pulse width of 150 ns. Subsequently, a three-stage Tm3+-doped fiber amplifier is implemented using a single-mode double-cladding Tm3+-doped fiber to increase the DSR-like pulse output power to 52.5 W, achieving a pump slope efficiency of 47.1% in the main amplifier. A 25 m first-order Raman-gain fiber (UHNA7) is pumped by a DSR-like pulse, and 16.3 W of pure 2.135 µm first-order Raman light with a spectral purity of 73.4% is obtained. Finally, 5.4 W of 2.35 µm second-order Raman light with a spectral purity of 66% is obtained using a 10 m 98% germania-core fiber as a second-order Raman-gain fiber cascaded after UHNA7 fiber. To the best of our knowledge, this is the highest output power ever obtained from a 2.3 µm laser.

2.
Opt Express ; 32(9): 15658-15666, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859211

ABSTRACT

Here, we demonstrate a compact and efficient high-power mid-infrared supercontinuum (MIR-SC) laser source based on a tunable noise-like pulse (NLP) fiber laser system and a short section of single-mode germania-core fiber (GCF). The NLP all-polarization-maintaining fiber laser system can deliver the maximum output power of ∼30.6 W and a broadband spectrum (∼1.8-2.7 µm) with a compact single-stage fiber amplifier. By directly pumping only ∼6.5 cm-long GCF with a core diameter of ∼3.5 µm, a MIR-SC (spectral coverage of ∼1.5-3.3 µm) with a maximum power of ∼25.2 W and a power conversion efficiency ∼81.2% is obtained, which represent the highest power and efficiency in any single-mode GCF-based MIR-SCs, to the best of our knowledge. Our study contributes to the high-power MIR-SC laser source with compact all-fiber configuration, and will prompt its practical applications.

3.
Int J Biol Macromol ; 260(Pt 2): 129657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253154

ABSTRACT

Seven macromolecular polysaccharides (HPP-2S-HPP-8S) were purified from the gonads of sea urchin Hemicentrotus pulcherrimus. They were characterized as α-glucan homologues, sharing the same α-1,4-glucan backbone substituted at C-6 positions by glucose with HPP-1S that occurs as the major polysaccharide in H. pulcherrimus, while with higher degrees of branching, and additionally possessing minor amounts of mannose and ribose. The branching degree and amounts of non-glucose branches showed a generally increasing tendency across HPP-2S - HPP-8S. These polysaccharides exhibited significant macrophage-activating effects by augmenting the secretion of NO, TNF-α and IL-6, which probably involves the activation of NF-κB and MAPKs signaling pathways. Notably, the polysaccharides with a higher degree of branching exhibited markedly enhanced immunomodulatory capacity with a lowest effective concentration of 1.95 µg/mL. This work provides new cases of bioactive α-glucans and reveals their potential application as immunomodulating agents.


Subject(s)
Glucans , Hemicentrotus , Animals , Signal Transduction , Polysaccharides , Sea Urchins
4.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686929

ABSTRACT

The design of earth-abundant and highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is crucial for hydrogen production through overall water splitting. Herein, we report a novel nanostructure consisting of vertically oriented CoP hierarchical nanosheet arrays with in situ-assembled carbon skeletons on a Ti foil electrode. The novel Zeolitic Imidazolate Framework-67 (ZIF-67) template-derived hierarchical nanosheet architecture effectively improved electrical conductivity, facilitated electrolyte transport, and increased the exposure of the active sites. The obtained bifunctional hybrid exhibited a low overpotential of 72 mV at 10 mA cm-2 and a small Tafel slope of 65 mV dec-1 for HER, and an improved overpotential of 329 mV and a Tafel slope of 107 mV dec-1 for OER. Furthermore, the assembled C@CoP||C@CoP electrolyzer showed excellent overall water splitting performance (1.63 V) at a current density of 10 mA cm-2 and superior durability. This work provides a structure engineering strategy for metal-organic framework (MOF) template-derived hybrids with outstanding electrocatalytic performance.

5.
Appl Opt ; 62(8): 1921-1926, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133075

ABSTRACT

In this paper, an indium antimonide (InSb) saturable absorber (SA) was successfully fabricated. The saturable absorption properties of the InSb SA were studied, and they show a modulation depth and a saturable intensity of 5.17% and 9.23M W/c m 2, respectively. By employing the InSb SA and building the ring cavity laser structure, the bright-dark soliton operations were successfully obtained by increasing the pump power to 100.4 mW and adjusting the polarization controller. As the pump power increased from 100.4 to 180.3 mW, the average output power increased from 4.69 to 9.42 mW, the corresponding fundamental repetition rate was 2.85 MHz, and the signal-to-noise ratio was 68 dB. The experimental results show that InSb with excellent saturable absorption characteristics can be used as a SA to obtain pulse lasers. Therefore, InSb has important potential in fiber laser generation, further applications in optoelectronics, laser distance ranging, and optical fiber communication, and it can be widely developed.

6.
Nanomaterials (Basel) ; 13(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985932

ABSTRACT

Abundant research findings have proved the value of two-dimensional (2D) materials in the study of nonlinear optics in fiber lasers. However, there remains two problems: how to reduce the start-up threshold, and how to improve the damage threshold, of fiber lasers based on 2D materials. A 15.1 mW low-threshold mode-locked fiber laser, based on a Cr2Si2Te6 saturable absorber (SA) prepared by the liquid-phase exfoliation method, is demonstrated successfully in this work. This provides a useful and economical method to produce SAs with low insertion loss and low saturation intensity. Besides, multiple high-order harmonics, from the fundamental frequency (12.6 MHz) to the 49th-order harmonic (617.6 MHz), mode-locked operations are recorded. The experimental results indicate the excellent potential of Cr2Si2Te6 as an optical modulator in exploring the soliton dynamics, harmonic mode locking, and other nonlinear effects in fiber lasers.

7.
Appl Opt ; 61(11): 3254-3259, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471305

ABSTRACT

In this work, a saturable absorber (SA) based on Cr2Si2Te6 (CST), with a modulation depth of 14.90% and saturation intensity of 4.81MW/cm2, was prepared by a liquid phase stripping method. Its nonlinear optical properties and application in obtaining mode-locked pulse output of bright-dark solitons are studied. When the pump power was 1250 mW, the maximum output power was 26.60 mW; the energy of the single pulse was 15.02 nJ, and the repetition rate was 1.77 MHz. Our results provided evidence that CST can be used as an excellent SA for a mode-locked laser and demonstrated that ferromagnetic insulators can be used for the study of bright-dark soliton pairs.

8.
Appl Opt ; 61(4): 898-903, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35201058

ABSTRACT

In our work, a new-type, to the best of our knowledge, ferromagnetic insulator and its nonlinear optical absorption characteristics and related ultrafast modulation applications were investigated. Cr2Si2Te6 saturable absorbers (SAs) with a modulation depth and a saturable intensity of 9.7% and 3.5MW/cm2 were fabricated. By adjusting the pump power to 120 mW and optimizing the polarization state, traditional soliton operations were obtained successfully; the corresponding duration of pulse and the fundamental repetition rate were ∼1.33ps and 6.70 MHz, and the signal-to-noise ratio was 50 dB. The experimental results reveal that Cr2Si2Te6 with excellent saturable absorption characteristics can be used as a SA to obtain ultrafast pulse lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...