Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
J Am Chem Soc ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713009

ABSTRACT

Unveiling innovative mechanisms to design new highly efficient fluorescent materials and, thereby, fabricate high-performance organic light-emitting diodes (OLEDs) is a concerted endeavor in both academic and industrial circles. Polycyclic aromatic hydrocarbons (PAHs) have been widely used as fluorescent emitters in blue OLEDs, but device performances are far from satisfactory. In response, we propose the concept of "nitrogen effects" endowed by doping electron-withdrawing nitrogen atoms into PAH fluorescence emitters. The presence of the n orbital on the imine nitrogen is conducive to promoting electron coupling, which leads to increased molar absorptivity and an accelerated radiative decay rate of emitters, thereby facilitating the Förster energy transfer (FET) process in the OLEDs. Additionally, electronically withdrawing nitrogen atoms enhances host-guest interactions, thereby positively affecting the FET process and the horizontal orientation factor of the emitting layer. To validate the "nitrogen effects" concept, cobalt-catalyzed multiple C-H annulation has been utilized to incorporate alkynes into the imine-based frameworks, which enables various imine-embedded PAH (IE-PAH) fluorescence emitters. The cyclization demonstrates notable regioselectivity, thereby offering a practical tool to precisely introduce peripheral groups at desired positions with bulky alkyl units positioned adjacent to the nitrogen atoms, which were previously beyond reach through the Friedel-Crafts reaction. Blue OLEDs fabricated with IE-PAHs exhibit outstanding performance with a maximum external quantum efficiency (EQEmax) of 32.7%. This achievement sets a groundbreaking record for conventional blue PAH-based fluorescent emitters, which have an EQEmax of 24.0%.

2.
J Org Chem ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752832

ABSTRACT

Methods for regioselective N-trideuteromethylation of tautomeric polyaza heterocycles are highly sought-after. Disclosed herein is an N-trideuterated methylation reaction of imidazoles and pyrazoles with high regioselectivity and deuterium purity using easily available CF3SO3CD3 as the -CD3 source. This method enables the easy synthesis of important deuterium-labeled azoles, including dimetridazole-d3, ipronidazole-d3, hydroxy dimetridazole-d3, and ronidazole-d3.

3.
Orphanet J Rare Dis ; 19(1): 208, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773525

ABSTRACT

BACKGROUND: When using traditional extensible intramedullary rods to treat congenital pseudarthrosis of the tibia (CPT), there were cases of re-fracture and internal fixation fracture. Therefore, the authors propose a research hypothesis that a thicker distal extensible intramedullary rod can better protect the tibia and reduce the incidence of refracture PURPOSE: To investigate the clinical efficacy of new and traditional extensible intramedullary rods in the treatment of CPT in children METHODS: From January 2017 to December 2021, the clinical data of 49 children with CPT who were treated with traditional extensible intramedullary rod combined surgery (group A) and new extensible intramedullary rod combined surgery (group B) in our hospital were collected. Inclusive criteria: ① Crawford type IV CPT children; ② The operation was performed by the same team. EXCLUSION CRITERIA: patients with multiple tibial angulation. During follow-up, the initial healing, proximal tibial valgus, tibial length, ankle valgus, refracture and intramedullary rod displacement of CPT children in the two groups were evaluated RESULTS: It was a retrospective investigation. In group A, 26 cases met the inclusion criteria, 24 cases achieved primary healing, with an primary healing rate of 92%, including 1 case of nonunion due to osteomyelitis complications after surgery, and 1 case of delayed healing, with an average healing time of 4.7 ± 0.8 months. 17 cases (68%) had unequal tibia length, with an average difference of 1.6 ± 0.8 cm. Ankle valgus occurred in 10 cases (40%) with an average of 14.4°±4.8°; Proximal tibial valgus occurred in 6 cases (24%) with an average of 7 °± 1.8 °. 20 cases (80%) had tip of the rod migration.10 cases (40%) had re-fracture; The average follow-up time was 2.4 ± 0.4 years. In group B, 22 patients achieved primary healing, and the primary healing rate was 95%, including 1 case with delayed healing. The average healing time was 4.7 ± 1.7months. 14 cases (61%) had unequal tibia length, with an average difference of 1 ± 0.5 cm. Ankle valgus occurred in 4 cases (17%) with an average of 12.3 °±4.9°; The proximal tibia valgus occurred in 9 cases (39%), with an average of 7.7 °±2.5 °. 14 cases (61%) had new type of intramedullary rod displacement. 3 cases (13%) had re-fracture; The average follow-up time was 2.3 ± 0.6years CONCLUSION: Compared with the traditional extended intramedullary rod combined operation, the new type of extended intramedullary rod combined operation has a lower incidence of re-fracture after CPT, but it still needs to be verified by large sample and multi-center research.


Subject(s)
Pseudarthrosis , Tibia , Humans , Pseudarthrosis/surgery , Pseudarthrosis/congenital , Female , Male , Retrospective Studies , Tibia/surgery , Child, Preschool , Fracture Fixation, Intramedullary/methods , Child , Tibial Fractures/surgery , Treatment Outcome
4.
Games Health J ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808471

ABSTRACT

Objective: College students experience intense anxiety, for which biofeedback mindfulness techniques show effectiveness in relief. However, typical biofeedback products often lead to user fatigue and boredom because of a single or fixed feedback and lack of focus on mindfulness enhancement. Materials and Methods: In this research, we developed Mindjourney, a VR-based respiratory feedback mindfulness system, designed to enhance mindfulness and alleviate anxiety through continuous/noncontinuous feedback and nonjudgmental reward/punishment for self-perception and attention management. A randomized controlled trial involved 72 college students, split equally into short-term (n = 34, age: 23.11 ± 1.729) and 4-week long-term (n = 38, age: 24.12 ± 1.408) groups, with equal randomization for intervention and control groups. Pre/postintervention tests were measured by using Trait Anxiety Inventory (TAI) and Five Facet Mindfulness Questionnaire (FFMQ) for long-term groups and Galvanic Skin Response and State Anxiety Inventory (SAI) for short-term groups. Results: Results showed that the long-term intervention group showed a significant increase in mindfulness (P = 0.001 for FFMQ total score). Furthermore, observe and act with awareness subscales showed significant increase after intervention (P = 0.034 for observe, P < 0.001 for act with awareness) compared with the control group. Both intervention groups demonstrated a significant decrease in anxiety levels compared with the control groups (P = 0.049 for SAI, P = 0.01 for TAI). Moreover, participants expressed high interest in this biofeedback mindfulness system and willingness for long-term usage. Conclusion: The proposed biofeedback mindfulness practice system could potentially facilitate mindfulness practice and serve as a convenient tool for anxiety relief in campus college students.

5.
Talanta ; 276: 126246, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796994

ABSTRACT

Fluid biopsy technology, characterized by its minimally invasive nature, speed, and continuity, has become a rapidly advancing and widely applied real-time diagnostic technique. Among various biomarkers, proteins represent the most abundant class of disease indicators. The sensitive and accurate detection of protein markers in bodily fluids is significantly influenced by the control exerted by recognition ligands. Aptamers, which are structurally dynamic functional oligonucleotides, exhibit high affinity, specific recognition of targets, and notable characteristics of high editability and modularity. These features make aptamer universal "recognition-capture" components, contribute to a significant leap in their applications within the biosensor domain. In this context, we provide a comprehensive review of the extensive application of aptamer-based biosensors in fluid biopsy. We systematically compile the characteristics and construction strategies of aptamer-based biosensors tailored for fluid biopsy, including aptamer sequences, affinity (KD), fluid background, sensing technologies, sensor construction strategies, incubation time, detection performance, and influencing factors. Furthermore, a comparative analysis of their advantages and disadvantages was conducted. In conclusion, we delineate and deliberate on prospective research trajectories and challenges that lie ahead in the realm of aptamer-based biosensors for fluid biopsy.

6.
Front Cell Infect Microbiol ; 14: 1382029, 2024.
Article in English | MEDLINE | ID: mdl-38817443

ABSTRACT

Infections of hepatotropic viruses cause a wide array of liver diseases including acute hepatitis, chronic hepatitis and the consequently developed cirrhosis and hepatocellular carcinoma (HCC). Among the five classical hepatotropic viruses, hepatitis B virus (HBV) and hepatitis C virus (HCV) usually infect human persistently and cause chronic hepatitis, leading to major troubles to humanity. Previous studies have revealed that several types of inflammasomes are involved in the infections of HBV and HCV. Here, we summarize the current knowledge about their roles in hepatitis B and C. NLRP3 inflammasome can be activated and regulated by HBV and HCV. It is found to exert antiviral function or mediates inflammatory response in viral infections depending on different experimental models. Besides NLRP3 inflammasome, IFI16 and AIM2 inflammasomes participate in the pathological process of hepatitis B, and NALP3 inflammasome may sense HCV infection in hepatocytes. The inflammasomes affect the pathological process of viral hepatitis through its downstream secretion of inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 or induction of pyroptosis resulting from cleaved gasdermin D (GSDMD). However, the roles of inflammasomes in different stages of viral infection remains mainly unclear. More proper experimental models of viral hepatitis should be developed for specific studies in future, so that we can understand more about the complexity of inflammasome regulation and multifunction of inflammasomes and their downstream effectors during HBV and HCV infections.


Subject(s)
Hepacivirus , Hepatitis B virus , Hepatitis B, Chronic , Hepatitis C, Chronic , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , Hepatitis C, Chronic/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hepacivirus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Hepatitis B virus/immunology , DNA-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Pyroptosis , Animals , Phosphoproteins/metabolism , Nuclear Proteins/metabolism , Hepatocytes/virology , Hepatocytes/immunology , Interleukin-18/metabolism , Phosphate-Binding Proteins/metabolism , Gasdermins
7.
Biomed Pharmacother ; 175: 116740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749178

ABSTRACT

Intestinal diseases often stem from a compromised intestinal barrier. This barrier relies on a functional epithelium and proper turnover of intestinal cells, supported by mitochondrial health. Mitochondria and lysosomes play key roles in cellular balance. Our previous researches indicate that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier damage by enhancing mitochondria-lysosome crosstalk, though the detailed mechanism is unclear. This study aimed to investigate the role of mitochondria-lysosome crosstalk in the protective effect of SeNPs on intestinal barrier function in mice exposed to lipopolysaccharide (LPS). The results showed that LPS exposure increased intestinal permeability in mice, leding to structural and functional damage to mitochondrial and lysosomal. Oral administration of SeNPs significantly upregulated the expression levels of TBC1D15 and Fis1, downregulated the expression levels of Rab7, Caspase-3, Cathepsin B, and MCOLN2, effectively alleviated LPS-induced mitochondrial and lysosomal dysfunction and maintained the intestinal barrier integrity in mice. Furthermore, SeNPs notably inhibited mitophagy caused by adenovirus-associated virus (AAV)-mediated RNA interference the expression of TBC1D15 in the intestine of mice, maintained mitochondrial and lysosomal homeostasis, and effectively alleviated intestinal barrier damage. These results suggested that SeNPs can regulate mitochondria-lysosome crosstalk and inhibit its damage by regulating the TBC1D15/Fis1/Rab7- signaling pathway. thereby alleviating intestinal barrier damage. It lays a theoretical foundation for elucidating the mechanism of mitochondria-lysosome crosstalk in regulating intestinal barrier damage and repair, and provides new ideas and new ways to establish safe and efficient nutritional regulation strategies to prevent and treat intestinal diseases caused by inflammation.


Subject(s)
GTPase-Activating Proteins , Intestinal Mucosa , Lysosomes , Mitochondria , Mitochondrial Proteins , Nanoparticles , Selenium , Signal Transduction , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Animals , Selenium/pharmacology , Nanoparticles/chemistry , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Signal Transduction/drug effects , GTPase-Activating Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Male , Lysosomes/drug effects , Lysosomes/metabolism , Mitochondrial Proteins/metabolism , Membrane Proteins/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Permeability/drug effects
8.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38610254

ABSTRACT

There have been many studies on the significant correlation between the hydrogen peroxide content of different tissues or cells in the human body and the risk of disease, so the preparation of biosensors for detecting hydrogen peroxide concentration has been a hot topic for researchers. In this paper, palladium nanoparticles (PdNPs) and laser-induced graphene (LIG) were prepared by liquid-phase pulsed laser ablation and laser-induced technology, respectively. The complexes were prepared by stirring and used for the modification of screen-printed electrodes to develop a non-enzymatic hydrogen peroxide biosensor that is low cost and mass preparable. The PdNPs prepared with anhydrous ethanol as a solvent have a uniform particle size distribution. The LIG prepared by laser direct writing has good electrical conductivity, and its loose porous structure provides more adsorption sites. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Compared with bare screen-printed electrodes, the modified electrodes are more sensitive for the detection of hydrogen peroxide. The sensor has a linear response range of 5 µM-0.9 mM and 0.9 mM-5 mM. The limit of detection is 0.37 µM. The above conclusions indicate that the hydrogen peroxide electrochemical biosensor prepared in this paper has great advantages and potential in electrochemical catalysis.

9.
J Am Chem Soc ; 146(15): 10798-10805, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579304

ABSTRACT

Though the coordination environment of single metal sites has been recognized to be of great importance in promoting catalysis, the influence of simultaneous precise modulation of primary and secondary coordination spheres on catalysis remains largely unknown. Herein, a series of single Ni(II) sites with altered primary and secondary coordination spheres have been installed onto metal-organic frameworks (MOFs) with UiO-67 skeleton, affording UiO-Ni-X-Y (X = S, O; Y = H, Cl, CF3) with X and Y on the primary and secondary coordination spheres, respectively. Upon deposition with CdS nanoparticles, the resulting composites present high photocatalytic H2 production rates, in which the optimized CdS/UiO-Ni-S-CF3 exhibits an excellent activity of 13.44 mmol g-1, ∼500 folds of the pristine catalyst (29.6 µmol g-1 for CdS/UiO), in 8 h, highlighting the key role of microenvironment modulation around Ni sites. Charge kinetic analysis and theoretical calculation results demonstrate that the charge transfer dynamics and reaction energy barrier are closely correlated with their coordination spheres. This work manifests the advantages of MOFs in the fabrication of structurally precise catalysts and the elucidation of particular influences of microenvironment modulation around single metal sites on the catalytic performance.

10.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675595

ABSTRACT

The COVID-19 pandemic over recent years has shown a great need for the rapid, low-cost, and on-site detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an aptamer-based colloidal gold nanoparticle lateral flow test strip was well developed to realize the visual detection of wild-type SARS-CoV-2 spike proteins (SPs) and multiple variants. Under the optimal reaction conditions, a low detection limit of SARS-CoV-2 S proteins of 0.68 nM was acquired, and the actual detection recovery was 83.3% to 108.8% for real-world samples. This suggests a potential tool for the prompt detection of SARS-CoV-2 with good sensitivity and accuracy, and a new method for the development of alternative antibody test strips for the detection of other viral targets.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Gold , Metal Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , COVID-19/virology , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Reagent Strips , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
11.
Heliyon ; 10(7): e28731, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596104

ABSTRACT

Magnetic resonance imaging (MRI) is an indispensable medical imaging examination technique in musculoskeletal medicine. Modern MRI techniques achieve superior high-quality multiplanar imaging of soft tissue and skeletal pathologies without the harmful effects of ionizing radiation. Some current limitations of MRI include long acquisition times, artifacts, and noise. In addition, it is often challenging to distinguish abutting or closely applied soft tissue structures with similar signal characteristics. In the past decade, Artificial Intelligence (AI) has been widely employed in musculoskeletal MRI to help reduce the image acquisition time and improve image quality. Apart from being able to reduce medical costs, AI can assist clinicians in diagnosing diseases more accurately. This will effectively help formulate appropriate treatment plans and ultimately improve patient care. This review article intends to summarize AI's current research and application in musculoskeletal MRI, particularly the advancement of DL in identifying the structure and lesions of upper extremity joints in MRI images.

12.
Mar Pollut Bull ; 202: 116296, 2024 May.
Article in English | MEDLINE | ID: mdl-38579444

ABSTRACT

The settling of microplastics (MPs) in the initial acceleration fall stage, i.e., before reaching the terminal settling velocity, has not been investigated, which is however important for understanding MP transport and fate. MP disks sized 3-5 mm, of three shapes and made of three polymers (1.038-1.343 g/cm3) were examined. Five release ways and three release angles (0°, 45°, 90°) were used. MP disks with the release angle of 0° start to zigzag immediately after the release, while the MP disks with the release angles of 45° and 90° first adjust to a horizontal position and then zigzag. The adjustment distances in the vertical and horizontal directions, as well as the maximum vertical settling velocity, are influenced by MP density, size, release angle and release way. The detailed settling trajectory and velocity were also analyzed. Finally, the time-changing drag coefficient of MP disks was examined and discussed.


Subject(s)
Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring
13.
iScience ; 27(4): 109398, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38544573

ABSTRACT

Mitochondria play a vital role in non-shivering thermogenesis in both brown and subcutaneous white adipose tissues (BAT and scWAT, respectively). However, specific regulatory mechanisms driving mitochondrial function in these tissues have been unclear. Here we demonstrate that prolonged activation of ß-adrenergic signaling induces epigenetic modifications in scWAT, specifically targeting the enhancers for the mitochondria master regulator genes Pgc1a/b. This is mediated at least partially through JMJD1A, a histone demethylase that in response to ß-adrenergic signals, facilitates H3K9 demethylation of the Pgc1a/b enhancers, promoting mitochondrial biogenesis and the formation of beige adipocytes. Disruption of demethylation activity of JMJD1A in mice impairs activation of Pgc1a/b driven mitochondrial biogenesis and limits scWAT beiging, contributing to reduced energy expenditure, obesity, insulin resistance, and metabolic disorders. Notably, JMJD1A demethylase activity is not required for Pgc1a/b dependent thermogenic capacity of BAT especially during acute cold stress, emphasizing the importance of scWAT thermogenesis in overall energy metabolism.

14.
Talanta ; 273: 125837, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479030

ABSTRACT

CRISPR/Cas9 is a natural immune system of archaea and bacteria, which has been widely used in gene editing. In order to better control and improve the accuracy and safety of the system, inhibitors for SpyCas9 as "switches" have been selected for several years. The available inhibitors currently are all natural polypeptides inhibitors derived from phages, except one small molecule inhibitor. These natural inhibitors are challenging to obtain and are available in limited quantities, and the small molecule inhibitor is cytotoxic. Herein, we discover aptamers against the SpyCas9 protein, by coupling CE-SELEX within one-round pressure controllable selection strategy. One of the identified aptamers, Apt2, shows high affinity at the nanomolar level and leads for effective SpyCas9 enzymatic inhibition in vitro. It is predicted that Apt2 interacts with the HNH and RuvC domains of SpyCas9, competitively inhibiting the binding of substrate DNA to SpyCas9. The proposed aptamer inhibitor is the oligonucleotide inhibitor of SpyCas9, which has the potential in construction of the universal, simple and precise CRISPR-Cas9 system activity control strategy. Meanwhile, these aptamers could also be valuable tools for study of the functions of CRISPR/Cas9 and the related functional mechanisms.


Subject(s)
Aptamers, Nucleotide , Bacteriophages , Gene Editing , DNA/chemistry , Bacterial Proteins/metabolism , Aptamers, Nucleotide/metabolism , SELEX Aptamer Technique
15.
Fitoterapia ; 175: 105884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460855

ABSTRACT

There are >350 species of the Ophiobolus genus, which is not yet very well-known and lacks research reports on secondary metabolites. Three new 3,4-benzofuran polyketides 1-3, a new 3,4-benzofuran polyketide racemate 4, two new pairs of polyketide enantiomers (±)-5 and (±)-7, two new acetophenone derivatives 6 and 8, and three novel 1,4-dioxane aromatic polyketides 9-11, were isolated from a fungus Ophiobolus cirsii LZU-1509 derived from an important medicinal and economic crop Anaphalis lactea. The isolation was guided by LC-MS/MS-based GNPS molecular networking analysis. The planar structures and relative configurations were mainly elucidated by NMR and HR-ESI-MS data. Their absolute configurations were determined by using X-ray diffraction analysis and via comparing computational and experimental ECD, NMR, and specific optical rotation data. 9 possesses an unreported 5/6/6/6/5 five-ring framework with a 1,4-dioxane, and 10 and 11 feature unprecedented 6/6/6/5 and 6/6/5/6 four-ring frames containing a 1,4-dioxane. The biosynthetic pathways of 9-11 were proposed. 1-11 were nontoxic in HT-1080 and HepG2 tumor cells at a concentration of 20 µM, whereas 3 and 5 exerted higher antioxidant properties in the hydrogen peroxide-stimulated model in the neuron-like PC12 cells. They could be potential antioxidant agents for neuroprotection.


Subject(s)
Antioxidants , Ascomycota , Polyketides , Molecular Structure , Antioxidants/pharmacology , Antioxidants/isolation & purification , Polyketides/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Humans , Ascomycota/chemistry , Cell Line, Tumor , Animals , China
16.
J Biol Chem ; 300(5): 107233, 2024 May.
Article in English | MEDLINE | ID: mdl-38552738

ABSTRACT

The NACHT, leucine-rich repeat, and pyrin domains-containing protein 3 (collectively known as NLRP3) inflammasome activation plays a critical role in innate immune and pathogenic microorganism infections. However, excessive activation of NLRP3 inflammasome will lead to cellular inflammation and tissue damage, and naturally it must be precisely controlled in the host. Here, we discovered that solute carrier family 25 member 3 (SLC25A3), a mitochondrial phosphate carrier protein, plays an important role in negatively regulating NLRP3 inflammasome activation. We found that SLC25A3 could interact with NLRP3, overexpression of SLC25A3 and knockdown of SLC25A3 could regulate NLRP3 inflammasome activation, and the interaction of NLRP3 and SLC25A3 is significantly boosted in the mitochondria when the NLRP3 inflammasome is activated. Our detailed investigation demonstrated that the interaction between NLRP3 and SLC25A3 disrupted the interaction of NLRP3-NEK7, promoted ubiquitination of NLRP3, and negatively regulated NLRP3 inflammasome activation. Thus, these findings uncovered a new regulatory mechanism of NLRP3 inflammasome activation, which provides a new perspective for the therapy of NLRP3 inflammasome-associated inflammatory diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Humans , HEK293 Cells , Animals , Mitochondria/metabolism , Mice , Ubiquitination , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics
17.
J Immunother Cancer ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490714

ABSTRACT

BACKGROUND: In a prior report, we detailed the isolation and engineering of a bispecific killer cell engager, referred to as BiKE:E5C1. The BiKE:E5C1 exhibits high affinity/specificity for the CD16a activating receptor on natural killer (NK) cells and human epidermal growth factor receptor 2 (HER2) on cancer cells. In vitro studies have demonstrated that BiKE:E5C1 can activate the NK cells and induce the killing of HER2+ ovarian and breast cancer cells, surpassing the performance of the best-in-class monoclonal antibody, Trazimera (trastuzumab). To advance this BiKE technology toward clinical application, the objective of this research was to demonstrate the ability of BiKE:E5C1 to activate CD16+ immune cells such as NK cells and macrophages to kill cancer cells, and eradicate metastatic HER2+ tumors in NK humanized NOG mice. METHODS: We assessed BiKE:E5C1's potential to activate CD16-expressing peripheral blood (PB)-NK cells, laNK92 cells, and THP-1-CD16A monocyte-macrophages through flowcytometry and antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC) assays. Subsequently, laNK92 cells were selected as effector cells and genetically modified to express the nanoluciferase gene, enabling the monitoring of their viability in NK humanized NOG mice using quantitative bioluminescent imaging (qBLI). To evaluate the functionality of BiKE:E5C1 in vivo, we introduced firefly luciferase-expressing ovarian cancer cells via intraperitoneal injection into hIL-15 and hIL-2 NOG mice, creating a model of ovarian cancer metastasis. Once tumor establishment was confirmed, we treated the mice with laNK92 cells plus BiKE:E5C1 and the response to therapy was assessed using qBLI. RESULTS: Our data demonstrate that BiKE:E5C1 activates not only laNK92 cells but also PB-NK cells and macrophages, significantly enhancing their anticancer activities. ADCC assay demonstrated that IgG1 Fc region had no impact on BiKE:E5C1's anticancer activity. In vivo results reveal that both hIL-15 and hIL-2 NOG mouse models support the viability and proliferation of laNK92 cells. Furthermore, it was observed that BiKE:E5C1 activates laNK92 cells in mice, leading to eradication of cancer metastasis in both NK humanized hIL-15 and hIL-2 NOG mouse models. CONCLUSIONS: Collectively, our in vivo findings underscore BiKE:E5C1's potential as an immune cell engager capable of activating immune cells for cancer cell elimination, thereby expanding the arsenal of available BiKEs for cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Ovarian Neoplasms , Female , Mice , Humans , Animals , Antibody-Dependent Cell Cytotoxicity , Trastuzumab , Macrophages , Ovarian Neoplasms/metabolism
18.
Nat Commun ; 15(1): 2090, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453943

ABSTRACT

To solve three-dimensional structures of biological macromolecules in situ, large numbers of particles often need to be picked from cryo-electron tomograms. However, adoption of automated particle-picking methods remains limited because of their technical limitations. To overcome the limitations, we develop DeepETPicker, a deep learning model for fast and accurate picking of particles from cryo-electron tomograms. Training of DeepETPicker requires only weak supervision with low numbers of simplified labels, reducing the burden of manual annotation. The simplified labels combined with the customized and lightweight model architecture of DeepETPicker and accelerated pooling enable substantial performance improvement. When tested on simulated and real tomograms, DeepETPicker outperforms the competing state-of-the-art methods by achieving the highest overall accuracy and speed, which translate into higher authenticity and coordinates accuracy of picked particles and higher resolutions of final reconstruction maps. DeepETPicker is provided in open source with a user-friendly interface to support cryo-electron tomography in situ.


Subject(s)
Deep Learning , Electron Microscope Tomography , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods
19.
Heliyon ; 10(5): e26904, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434290

ABSTRACT

Background: Carotid arterial atherosclerotic stenosis is a well-recognized pathological basis of ischemic stroke; however, its underlying molecular mechanisms remain unknown. Vascular smooth muscle cells (VSMCs) play fundamental roles in the initiation and progression of atherosclerosis. Organelle dynamics have been reported to affect atherosclerosis development. However, the association between organelle dynamics and various cellular stresses in atherosclerotic progression remain ambiguous. Methods: In this study, we conducted transcriptomics and bioinformatics analyses of stable and vulnerable carotid plaques. Primary VSMCs were isolated from carotid plaques and subjected to histopathological staining to determine their expression profiles. Endoplasmic reticulum (ER), mitochondria, and lysosome dynamics were observed in primary VSMCs and VSMC cell lines using live-cell imaging. Moreover, the mechanisms underlying disordered organelle dynamics were investigated using comprehensive biological approaches. Results: ER whorls, a representative structural change under ER stress, are prominent dynamic reconstructions of VSMCs between vulnerable and stable plaques, followed by fragmented mitochondria and enlarged lysosomes, suggesting mitochondrial stress and lysosomal defects, respectively. Induction of mitochondrial stress alleviated ER stress and autophagy in an eukaryotic translation initiation factor (eIF)-2α-dependent manner. Furthermore, the effects of eIF2α on ER stress, mitochondrial stress, and lysosomal defects were validated using clinical samples. Conclusion: Our results indicate that morphological and functional changes in VSMC organelles, especially in ER whorls, can be used as reliable biomarkers for atherosclerotic progression. Moreover, eIF2α plays an important role in integrating multiple stress-signaling pathways to determine the behavior and fate of VSMCs.

20.
J Cell Physiol ; 239(2): e31149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308838

ABSTRACT

Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3ß/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Antioxidants/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glucose/metabolism , AMP-Activated Protein Kinases/metabolism , Lipid Metabolism/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction , Diabetes Mellitus, Experimental/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...