Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Neural Netw ; 174: 106237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513508

ABSTRACT

Although 3D human pose estimation has recently made strides, it is still difficult to precisely recreate a 3D human posture from a single image without the aid of 3D annotation for the following reasons. Firstly, the process of reconstruction inherently suffers from ambiguity, as multiple 3D poses can be projected onto the same 2D pose. Secondly, accurately measuring camera rotation without laborious camera calibration is a difficult task. While some approaches attempt to address these issues using traditional computer vision algorithms, they are not differentiable and cannot be optimized through training. This paper introduces two modules that explicitly leverage geometry to overcome these challenges, without requiring any 3D ground-truth or camera parameters. The first module, known as the relative depth estimation module, effectively mitigates depth ambiguity by narrowing down the possible depths for each joint to only two candidates. The second module, referred to as the differentiable pose alignment module, calculates camera rotation by aligning poses from different views. The use of these geometrically interpretable modules reduces the complexity of training and yields superior performance. By adopting our proposed method, we achieve state-of-the-art results on standard benchmark datasets, surpassing other self-supervised methods and even outperforming several fully-supervised approaches that heavily rely on 3D annotations.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Posture , Rotation , Calibration
2.
Chemosphere ; 354: 141687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484990

ABSTRACT

Biogas obtained from livestock manure is used as fuel for solid oxide fuel cells. Although H2S is a typical biogas, it is a fatal disadvantage for fuel-cell power generation and, thus, must be removed. In this study, we proposed an effective method for sulfide removal from water using a multi-hole dielectric barrier discharge (DBD) system. In this system, active species, such as ozone, ultraviolet rays, hydroxyl radicals, and hydrogen peroxide, were simultaneously generated. Under optimal conditions, dissolved sulfide (initial concentration: 120 mg/L) was completely degraded within 10 min in air plasma and 6 min in oxygen plasma. Changes in the physical properties of the sulfide-treated water were confirmed by measuring the pH, oxidation-reduction potential, and dissolved oxygen. Results of the by-product analysis showed that sulfide was converted into sulfate by reacting with a large amount of ozone, and the active species were emitted from the multi-hole DBD system. In summary, multi-hole DBD technology has demonstrated merit as a water-contaminant purification technology and for the removal of dissolved sulfide.


Subject(s)
Ozone , Water Pollutants, Chemical , Water , Biofuels , Water Pollutants, Chemical/analysis , Oxygen/analysis , Ozone/chemistry
3.
ACS Nano ; 18(8): 6387-6397, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38364103

ABSTRACT

Air pollution by particulate matter (PM) and airborne pathogens causes severe health problems in the human body. Presently, popular disposable air filters yield huge waste and have a fatal impact on the environment. Postuse cleaning of air filters also leads to secondary air and water pollution. Here, we report a sunlight-driven self-cleaning PM filter by coupling a full-solar-spectrum-active photocatalyst comprising up-conversion nanoparticles (UCNPs) decorated with semiconductor iron(III) oxide (UCNP@α-Fe2O3) shells stabilized upon graphene functionalized borosilicate fibrous membrane (rGO-BF). While rGO-BF ensures high PM adsorption, UCNP@α-Fe2O3 (NP) enables self-photodegradation of adsorbed PM under abundant sunlight and subsequent membrane regeneration, while preventing secondary air or water pollution. Rational surface chemistry and optimal microstructure enable our filters to remove >99% of PM2.5 under deplorable air-quality conditions. Moreover, our filter shows excellent antibacterial activity toward E. coli and S. aureus, demonstrating its potential for practical utilization in face masks, air filtering devices, and protective medical wear. This work successfully suggests an intriguing design platform for self-sustainable zero-waste air filter membranes.


Subject(s)
Air Filters , Particulate Matter , Humans , Particulate Matter/chemistry , Escherichia coli , Ferric Compounds , Staphylococcus aureus
4.
ACS Sens ; 8(10): 3687-3692, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37721017

ABSTRACT

We present a thermally stable, mechanically compliant, and sensitive polymer-based NO2 gas sensor design. Interconnected nanoscale morphology driven from spinodal decomposition between conjugated polymers tethered with polar side chains and thermally stable matrix polymers offers judicious design of NO2-sensitive and thermally tolerant thin films. The resulting chemiresitive sensors exhibit stable NO2 sensing even at 170 °C over 6 h. Controlling the density of polar side chains along conjugated polymer backbone enables optimal design for coupling high NO2 sensitivity, selectivity, and thermal stability of polymer sensors. Lastly, thermally stable films are used to implement chemiresistive sensors onto flexible and heat-resistant substrates and demonstrate a reliable gas sensing response even after 500 bending cycles at 170 °C. Such unprecedented sensor performance as well as environmental stability are promising for real-time monitoring of gas emission from vehicles and industrial chemical processes.


Subject(s)
Hot Temperature , Nitrogen Dioxide , Polymers
5.
J Control Release ; 360: 376-391, 2023 08.
Article in English | MEDLINE | ID: mdl-37406820

ABSTRACT

In the tumor microenvironment, lysyl oxidase (LOX) is known to play a key role in stabilizing the tumor extracellular matrix. Here, we designed LOX-responsive nanoparticles to interact with the collagen matrix of the tumor microenvironment. Collagen-coated and imiquimod-loaded polydopamine nanoparticles (CPN/IQ) could form crosslinked structures with the collagen matrix via LOX. In vitro, anchoring of CPN/IQ nanoparticles was observed with LOX-secreting CT26 cells, but this was blocked by a LOX inhibitor. In CT26 tumor-bearing mice, co-administration of nanoparticles plus the LOX inhibitor did not significantly alter the antitumor efficacy among nanoparticles. In the absence of the LOX inhibitor, however, a single administration of CPN/IQ could provide sustained responsiveness to near-infrared irradiation and ablation of primary tumors. In the primary tumor microenvironment, CPN/IQ lowered the Treg cell population but increased the cytotoxic CD3+CD8+ T cell population. In splenic dendritic cells, CPN/IQ treatment significantly increased the CD11c+CD86+ and CD11c+CD80+ cell populations. In a CT26 distant tumor-rechallenge model, CPN/IQ treatment increased the cytotoxic CD3+CD8+ T cell population and provided 100% survival of mice until 64 days. This study indicates the feasibility of tumor immune microenvironment modulation using LOX-responsive size-transforming nanoparticles. Although we tested the concept in a CT26 cell-derived tumor model, the concept of LOX-responsive collagen matrix- anchoring nanoparticles may be broadly applied to other tumor tissues with LOX-rich tumor microenvironments.


Subject(s)
Nanoparticles , Neoplasms , Mice , Animals , Tumor Microenvironment , Protein-Lysine 6-Oxidase , Collagen
6.
Small ; 19(18): e2207554, 2023 May.
Article in English | MEDLINE | ID: mdl-36734196

ABSTRACT

Iono-electronics, that is, transducing devices able to translate ionic injection into electrical output, continue to demand a variety of mixed ionic-electronic conductors (MIECs). Though polar sidechains are widely used in designing novel polymer MIECs, it remains unclear to chemists how much balance is needed between the two antagonistic modes of transport (ion permeability and electronic charge transport) to yield high-performance materials. Here, the impact of molecularly hybridizing ion permeability and charge mobility in semiconducting polymers on their performance in electrochemical and synaptic transistors is investigated. A series of diketopyrrolopyrrole (DPP)-based copolymers are employed to demonstrate the multifunctionality attained by controlling the density of polar sidechains along the backbone. Notably, efficient electrochemical signal transduction and reliable synaptic plasticity are demonstrated via controlled ion insertion and retention. The newly designed DPP-based copolymers further demonstrate unprecedented thermal tolerance among organic mixed ionic-electronic conductors, a key property in the manufacturing of organic electronics.

7.
Adv Mater ; 35(3): e2207338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300610

ABSTRACT

Nanoscale shape engineering is an essential requirement for the practical use of 2D materials, aiming at precisely customizing optimal structures and properties. In this work, sub-10-nm-scale block copolymer (BCP) self-assembled nanopatterns finely aligned along the atomic edge of 2D flakes, including graphene, MoS2 , and h-BN, are exploited for reliable nanopatterning of 2D materials. The underlying mechanism for the alignment of the self-assembled nanodomains is elucidated based on the wetting layer alternation of the BCP film in the presence of intermediate 2D flakes. The resultant highly aligned nanocylinder templates with remarkably low levels of line edge roughness (LER) and line-width roughness (LWR) yield a sub-10-nm-wide graphene nanoribbon (GNR) array with noticeable switching characteristics (on-to-off ratio up to ≈6 × 104 ).

8.
ACS Nano ; 16(11): 18767-18776, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36374261

ABSTRACT

The recent emerging significance of the Internet of Things (IoT) demands sensor devices to be integrated with many different functional structures and devices while conserving their original functionalities. To this end, optical transparency and mechanical flexibility of sensor devices are critical requirements for optimal integration as well as high sensitivity. In this work, a transparent, flexible, and sensitive gas sensor building platform is introduced by using multilevel self-assembly of block copolymers (BCPs) and polystyrene (PS) colloids. For the demonstration of an H2 gas sensor, a hierarchically porous Pd metal mesh structure is obtained by overlaying the two different patterned template structures with synergistic, distinctive characteristic length scales. The hierarchical Pd mesh shows not only high transparency over 90% but also superior sensing performance in terms of response and recovery time owing to enhanced Pd-to-hydride ratio and short H2 diffusion lengths from the enlarged active surface areas. The hierarchical morphology also endows high mechanical flexibility while securing reliable sensing performance even under severe mechanical deformation cycles. Our scalable self-assembly based multiscale nanopatterning offers an intriguing generalized platform for many different multifunctional devices requiring hidden in situ monitoring of environmental signals.

9.
ACS Nano ; 16(6): 9172-9182, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35679534

ABSTRACT

Many interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 µm. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.

10.
Adv Mater ; 34(34): e2203992, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35773228

ABSTRACT

A novel strategy for robust and ultrathin (<1 µm) multilayered protective structures to address uncontrolled Lithium (Li) dendrite growth at Li-metal battery anodes is reported. Synergetic interaction among Ag nanoparticles (Ag NPs), reduced graphene oxide (rGO) films, and self-assembled block-copolymer (BCP) layers enables effective suppression of dendritic Li growth. While Ag NP layer confines the growth of Li metal underneath the rGO layer, BCP layer facilitates the fast and uniformly distributed flux of Li-ion transport and mechanically supports the rGO layer. Notably, highly aligned nanochannels with ≈15 nm diameter and ≈600 nm length scale interpenetrating within the BCP layer offer reversible well-defined pathways for Li-ion transport. Dramatic stress relaxation with the multilayered structure is confirmed via structural simulation considering the mechanical stress induced by filamentary-growth of Li metal. Li-metal anodes modified with the protective layer well-maintain stable reaction interfaces with limited solid-electrolyte interphase formation, yielding outstanding cycling stability and enhanced rate capability, as demonstrated by the full-cells paired with high-loading of LiFePO4 cathodes. The idealized design of multilayer protective layer provides significant insight for advanced Li-metal anodes.

11.
ACS Appl Mater Interfaces ; 14(11): 13601-13610, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35255687

ABSTRACT

Graphene fiber is emerging as a new class of carbon-based fiber with distinctive material properties particularly useful for electroconductive components for wearable devices. Presently, stretchable and bendable graphene fibers are principally employing soft dielectric additives, such as polymers, which can significantly deteriorate the genuine electrical properties of pristine graphene-based structures. We report molecular-level lubricating nanodiamonds as an effective physical property modifier to improve the mechanical flexibility of graphene fibers by relieving the tight interlayer stacking among graphene sheets. Nanoscale-sized NDs effectively increase the tensile strain and bending strain of graphene/nanodiamond composite fibers while maintaining the genuine electrical conductivity of pristine graphene-based fibers. The molecular-level lubricating mechanism is elucidated by friction force microscopy on the nanoscale as well as by shear stress measurement on the macroscopic scale. The resultant highly bendable graphene/nanodiamond composite fiber is successfully weaved into all graphene fiber-based textiles and wearable Joule heaters, proposing the potential for reliable wearable applications.

12.
ACS Appl Mater Interfaces ; 14(10): 12011-12037, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35230079

ABSTRACT

Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.

13.
ACS Nano ; 15(7): 11762-11769, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34251179

ABSTRACT

The long-range alignment of supramolecular structures must be engineered as a first step toward advanced nanopatterning processes aimed at miniaturizing features to dimensions below 5 nm. This study introduces a facile method of directing the orientation of supramolecular columns over wafer-scale areas using faceted surfaces. Supramolecular columns with features on the sub-5 nm scale were highly aligned in a direction orthogonal to that of the facet patterning on unidirectional and nanoscopic faceted surface patterns. This unidirectional alignment of supramolecular columns is also observed by varying the thickness of the supramolecular film or by altering the dimensions of the facet pattern. The ordering behavior of the supramolecular columns can be attributed to the triangular depth profile of the bottom facet pattern. Furthermore, this directed self-assembly principle allows for the continuous alignment of supramolecular structures across ultralarge distances on flexible patterned substrates.

14.
ACS Nano ; 15(6): 10058-10066, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34060799

ABSTRACT

An effective pathway to build macroscopic scale functional architectures bearing diverse structural dimensions is one of the critical challenges in the two-dimensional (2D) MXene research area. Unfortunately, assembling MXene without adhesive binder is largely limited due to its innate brittle nature and the relatively weak inter-flake van der Waals contact, in contrast to other mechanically compliant 2D materials such as graphene. Herein, an electrochemical self-assembly of pure Ti3C2Tx MXenes is presented for functional multidimensional MXene structures, effectively driven by layer-by-layer spontaneous interfacial reduction at metal template surfaces and subsequent defunctionalization. A three-dimensional open porous aerogel as well as 2D highly stacked thin film structures could be readily obtained in this approach, along with largely enhanced electrical properties induced by spontaneous removal of charge-trapping oxygen functional groups. Accordingly, supercapacitors and electromagnetic interference shielding films based on the multidimensional assembly demonstrate excellent performances.

15.
ACS Appl Mater Interfaces ; 12(52): 58113-58121, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33325677

ABSTRACT

Nanoscale engineering of carbon materials is immensely demanded in various scientific areas. We present highly ordered nitrogen-doped carbon nanowire arrays via block copolymer (BCP) self-assembly under an electric field. Large dielectric constant difference between distinct polymer blocks offers rapid alignment of PMMA-b-PAN self-assembled nanodomains under an electric field. Lithographic patterning of the graphene electrode as well as straightforward thermal carbonization of the PAN block creates well-aligned carbon nanowire device structures. Diverse carbon nanopatterns including radial and curved arrays can be readily assembled by the modification of electrode shapes. Our carbon nanopatterns bear a nitrogen content over 26%, highly desirable for NO2 sensing, as the nitrogen element acts as adsorption sites for NO2 molecules. Aligned carbon nanowire arrays exhibits a 6-fold enhancement of NO2 sensitivity from a randomly aligned counterpart. Taking advantage of well-established benefits from device-oriented BCP nanopatterning, our approach proposes a viable route to highly ordered carbon nanostructures compatible to next-generation device architectures.

16.
Nanomedicine ; 24: 102053, 2020 02.
Article in English | MEDLINE | ID: mdl-31344502

ABSTRACT

Here, we report various therapeutic cargo-loadable DNA nanostructures that are shelled in polydopamine and noncovalently tethered with cancer cell-targeting DNA aptamers. Initial DNA nanostructure was formed by rolling-circle amplification and condensation with Mu peptides. This DNA nanostructure was loaded with an antisense oligonucleotide, a photosensitizer, or an anticancer chemotherapeutic drug. Each therapeutic agent-loaded DNA nanostructure was then shelled with polydopamine (PDA), and noncovalently decorated with a poly adenine-tailed nucleic acid aptamer (PA) specific for PTK7 receptor, resulting in PA-tethered and PDA-shelled DNA nanostructure (PA/PDN). PDA coating shell enabled photothermal therapy. In the cells overexpressing PTK7 receptor, photosensitizer-loaded PA/PDN showed greater photodynamic activity. Doxorubicin-loaded PA/PDN exerted higher anticancer activity than the other groups. Antisense oligonucleotide-loaded PA/PDN provided selective reduction of target proteins compared with other groups. Our results suggest that the PA-tethered and PDA-shelled DNA nanostructures could enable the specific receptor-targeted phototherapy, chemotherapy, and gene therapy against cancer cells.


Subject(s)
Aptamers, Nucleotide , Genetic Therapy , Hyperthermia, Induced , Neoplasms , Phototherapy , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Cell Adhesion Molecules/agonists , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Humans , Nanostructures/chemistry , Nanostructures/therapeutic use , Neoplasm Proteins/agonists , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Receptor Protein-Tyrosine Kinases/agonists , Receptor Protein-Tyrosine Kinases/metabolism
17.
ACS Nano ; 13(11): 13092-13099, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31600440

ABSTRACT

Block copolymer (BCP) lithography is an effective nanopatterning methodology exploiting nanoscale self-assembled periodic patterns in BCP thin films. This approach has a critical limitation for nonplanar substrate geometry arising from the reflow and modification of BCP films upon the thermal or solvent annealing process, which is inevitable to induce the mobility of BCP chains for the self-assembly process. Herein, reflow-free, 3D BCP nanopatterning is demonstrated by introducing a conformally grown adlayer by the initiated chemical vapor deposition (iCVD) process. A highly cross-linked poly(divinylbenzene) layer was deposited directly onto the BCP thin film surface by iCVD, which effectively prevented the reflow of BCP thin film during an annealing process. BCP nanopatterns could be stabilized on various substrate geometry, including a nonplanar deformed polymer substrate, a pyramid shape substrate, and a graphene fiber surface. A fiber-type hydrogen evolution reaction (HER) catalyst is suggested by stabilizing lamellar Pt nanopatterns on severely rough graphene fiber surfaces.

18.
Biomaterials ; 218: 119359, 2019 10.
Article in English | MEDLINE | ID: mdl-31349094

ABSTRACT

Immune checkpoint inhibitors have been widely studied in immunotherapy. Although antibodies have been more widely used to block immune checkpoints, DNA aptamers have unique advantages for this purpose. Here, we designed a DNA polyaptamer hydrogel that can be precisely cut by Cas9/sgRNA for programmed release of an immune checkpoint-blocking DNA aptamer. As a representative immune checkpoint inhibitor, we used a PD-1 DNA aptamer. Rolling-circle amplification was used to generate a hydrogel comprising DNA with PD-1 aptamer and an sgRNA-targeting sequence. When mixed with Cas9/sgRNA, the PD-1 DNA aptamer hydrogel (PAH) lost its gel property and liberated the PD-1 aptamer sequence. The precise Cas9/sgRNA-mediated release of the PD-1 DNA aptamer, which was confirmed by gel electrophoresis, was found to effectively activate the cytokine-secretion function of splenocytes. In vivo, molecular imaging revealed that PD-1 DNA polyaptamer hydrogel co-injected with Cas9/sgRNA (Cas9/PAH) remained at the injection site longer than free aptamer and yielded significantly higher antitumor effects and survival than hydrogel or free aptamer. Moreover, increased immune cell filtration was observed at tumor tissues treated with Cas9/PAH. These results suggest that our Cas9/sgRNA-edited immune checkpoint-blocking aptamer hydrogel has strong potential for anticancer immunotherapy.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Hydrogels/chemistry , Immunotherapy/methods , Programmed Cell Death 1 Receptor/genetics , Animals , CRISPR-Cas Systems , Humans , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning
19.
ACS Appl Mater Interfaces ; 11(22): 20265-20271, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31081329

ABSTRACT

A nanosquare array is an indispensable element for the integrated circuit design of electronic devices. Block copolymer (BCP) lithography, a promising bottom-up approach for sub-10 nm patterning, has revealed a generic difficulty in the production of square symmetry because of the thermodynamically favored hexagonal packing of self-assembled sphere or cylinder arrays in thin-film geometry. Here, we demonstrate a simple route to square arrays via the orthogonal self-assembly of two lamellar layers on topographically patterned substrates. While bottom lamellar layers within a topographic trench are aligned parallel to the sidewalls, top layers above the trench are perpendicularly oriented to relieve the interfacial energy between grain boundaries. The size and period of the square symmetry are readily controllable with the molecular weight of BCPs. Moreover, such an orthogonal self-assembly can be applied to the formation of complex nanopatterns for advanced applications, including metal nanodot square arrays.

20.
Asian J Pharm Sci ; 14(1): 16-29, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32104435

ABSTRACT

Cancer immunotherapy has been intensively investigated in both preclinical and clinical studies. Whereas chemotherapies use cytotoxic drugs to kill tumor cells, cancer immunotherapy is based on the ability of the immune system to fight cancer. Tumors are intimately associated with the immune system: they can suppress the immune response and/or control immune cells to support tumor growth. Immunotherapy has yielded promising results in clinical practice, but some patients show limited responses. This may reflect the complexities of the relationship between a tumor and the immune system. In an effort to improve the current immunotherapies, researchers have exploited nanomaterials in creating new strategies to cure tumors via modulation of the immune system in tumor tissues. Although extensive studies have examined the use of immune checkpoint-based immunotherapy, rather less work has focused on manipulating the innate immune cells. This review examines the recent approaches and challenges in the use of nanomaterials to modulate innate immune cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...