Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 7(4): 1055-1068, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633599

ABSTRACT

An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.

2.
Lab Chip ; 24(7): 2039-2048, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38411270

ABSTRACT

The advent of digital technologies has spurred the development of wearable sensing devices marking a significant shift in obtaining real-time physiological information. The principal objective is to transition from blood-centric monitoring to minimally invasive modalities, which will enable movement from specialised settings to more accessible environments such as the practices of general practitioners or even home settings. While subcutaneously implanted continuous monitoring devices have demonstrated this transition, detection of analytes from sample matrices like skin interstitial fluid (ISF), is a frontier that offers attractive minimally invasive routes for detection of biomarkers. This manuscript presents a comprehensive overview of our work in subdermal wearable biosensing patches for the simultaneous monitoring of glucose and lactate from ISF in ambulatory conditions. The performance of the subdermal wearable glucose monitoring patch was evaluated over a duration of three days, which is the longest reported duration reported till date. The subdermal wearable lactate sensing patch was worn for the duration of the exercise. Our findings highlight a critical observation that biofouling effects become apparent after a 24 h period. The data presented in this manuscript extends on the knowledge in the areas of continuous metabolite monitoring by introducing multifunctional polyphenol polymer films that can be used for both glucose and lactate monitoring with appropriate modifications. This study underscores the potential of subdermal wearable patches as versatile tools for real-time metabolite monitoring, positioning them as valuable assets in the evolution of personalised healthcare in diverse settings.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Blood Glucose Self-Monitoring , Blood Glucose , Glucose , Lactic Acid
3.
Biomaterials ; 299: 122186, 2023 08.
Article in English | MEDLINE | ID: mdl-37276798

ABSTRACT

Vitamin C (VC)-based cancer therapy is a promising therapeutic approach for a variety of cancers due to its profound effects on redox reactions and metabolic pathways. However, high administration dosage of VC for necessary therapeutic efficacy for cancers increases the risk of overt side effects and limits its clinical use. Here, we show cutaneous blue light irradiation can specifically upregulate the sodium-dependent vitamin C transporter 2 (SVCT2) of the tumor and increase effectively the VC concentration at the tumor sites by an overall low dosage administration. In the mouse melanoma model, blue light stimulates the SVCT2 expression through the nuclear factor-kappa B (NF-κB) signaling pathway both in vitro and in vivo. The increased cellular VC together with Fe2+ generated by blue light simultaneously elevate cellular oxidative stress and trigger the ferroptosis of melanoma. With this revealed mechanism, the synergistic actions of blue light on the VC transporter and Fe2+ generation lead to a ca. 20-fold reduction in the administration dosage of VC with an effective melanoma elimination and prolonged survival. The work defines the killing mechanism of blue light on VC-based cancer therapy and provides a practical approach for promoting VC uptake. This light-assisted VC therapy is not only highly efficient for melanoma but also considerable for a broad clinical utility.


Subject(s)
Ferroptosis , Melanoma , Mice , Animals , Ascorbic Acid/pharmacology , Sodium-Coupled Vitamin C Transporters/metabolism , Melanoma/therapy , Oxidative Stress/physiology , Disease Models, Animal
4.
J Comput Assist Tomogr ; 47(1): 31-37, 2023.
Article in English | MEDLINE | ID: mdl-36668979

ABSTRACT

OBJECTIVE: This study aimed to explore the feasibility and predictive value for local tumor progression (LTP) of the computed tomography (CT)-CT image fusion method versus side-by-side method to assess ablative margin (AM) in hepatocellular carcinoma ≥3 cm in diameter. MATERIALS AND METHODS: We selected patients with hepatocellular carcinoma ≥3 cm in diameter who underwent microwave ablation and had complete tumor ablation. We used the CT-CT image fusion method and side-by-side method to assess AM separately and divided the lesions into 3 groups: group I, minimum ablative margin (min-AM) <0 mm (the ablation zone did not fully cover the tumor); group II, 0 mm ≤ min-AM <5 mm; and group III, min-AM ≥5 mm. RESULTS: A total of 71 patients involving 71 lesions were included. The κ coefficient for the agreement between the CT-CT image fusion method and the side-by-side method in assessing min-AM was 0.14 (P = 0.028). Cumulative LTP rate was significantly different between groups by min-AM from the CT-CT image fusion method (P < 0.05) but not by min-AM from the side-by-side method (P = 0.807). Seventeen of the 20 LTP lesions were located at min-AM on fused CT images, with consistency rate of 85%. CONCLUSIONS: Compared with the side-by-side method, the CT-CT image fusion method is more accurate in assessing the AM of eccentrically ablated lesions and shows better predictive value for LTP. The min-AM based on CT-CT image fusion assessment is an important influencing factor for LTP.


Subject(s)
Carcinoma, Hepatocellular , Catheter Ablation , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Microwaves/therapeutic use , Catheter Ablation/methods , Tomography, X-Ray Computed/methods , Treatment Outcome , Retrospective Studies
5.
Materials (Basel) ; 15(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079294

ABSTRACT

Poor mechanical properties and durability of recycled aggregate concrete (RAC) hinder its application in the construction field. In this study, pre-wetted recycled coarse aggregate was used as the internal curing material for prepared RAC with low water-to-binder ratio (W/B), aiming to improve the mechanical properties and durability. The results show that the workability decreases with increasing contents of pre-wetted recycled coarse aggregate. The variation in compressive strength of RAC with different contents of pre-wetted recycled coarse aggregate is obvious within 28 d. After 28 d, the effect of internal curing of pre-wetted recycled coarse aggregate starts to occur, causing a sustained increase in compressive strength. The sealed concrete with 50% and 75% pre-wetted recycled coarse aggregate contents presents the highest compressive strength and better internal curing effect. The pre-wetted recycled coarse aggregate decreases the relative humidity inside the concrete and effectively inhibits the development of shrinkage in the early stages. The RAC with pre-wetted recycled coarse aggregate presents little effect on the drying shrinkage. Additionally, the electric flux of RAC cured for 28 d increases from 561C to 1001C, which presents good resistance to chloride permeation. Microscopic tests indicate that the incorporation of pre-wetted recycled coarse aggregate is beneficial to the improvements of internal structure of RAC.

SELECTION OF CITATIONS
SEARCH DETAIL
...