Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Inflammation ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865056

ABSTRACT

Microsomal PGE2 synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E2 (PGE2). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO4) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO4 application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.

2.
J Pineal Res ; 76(4): e12964, 2024 May.
Article in English | MEDLINE | ID: mdl-38803014

ABSTRACT

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Subject(s)
Circadian Rhythm , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Mice , Male , Circadian Rhythm/physiology , Melatonin/metabolism , Disease Progression , Mice, Inbred C57BL , Photoperiod , Kidney/metabolism , Kidney/pathology
3.
J Basic Microbiol ; 64(3): e2300222, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919047

ABSTRACT

One of the commonly employed methods in molecular biology is to utilize calcium chloride to treat Escherichia coli for the preparation of competent cells to facilitate foreign gene expression. However, the molecular mechanisms underlying Ca2+ mediation of competent cell formation and identification of the key genes involved in the process remain unclear. In previous studies, the combined analysis of transcriptomics and proteomics revealed bhsA as one of the crucial genes. The gene ontology functional annotation of bhsA identified it as a member of the YhcN family encoding an outer membrane protein that confers resistance to various stresses. The IPR0108542 domain found within the protein plays a significant role in stress response and biofilm formation in E. coli. Analysis of the STRING database showed that the proteins interacting with bhsA are primarily involved in biofilm formation and stress resistance. Using the RED homologous recombination method, a bhsA deletion strain was constructed to verify its role in E. coli genetic transformation. Although the mutant strain showed no significant differences in morphology or growth trend when compared to the wild-type strain, its transformation efficiency decreased by 1.14- and 1.64-fold with plasmids pUC19 and pET-32a. Furthermore, the 1-N-phenylnaphthylamine assay indicated a 1.71-fold reduction in cell membrane permeability in the mutant strain.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Plasmids
4.
Int Immunopharmacol ; 125(Pt A): 111158, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925950

ABSTRACT

Autoimmune hepatitis (AIH), characterized by immune-driven liver destruction and cytokine production, is a progressive inflammatory liver condition that may progress to hepatic cirrhosis or tumors. However, the underlying mechanism is not well understood, and the treatment options for this disease are limited. Pemetrexed (PEM), a clinically used anti-folate drug for treating various tumors, was found to inhibit the nuclear factor (NF)-κB signaling pathways that exert an important role in the development of AIH. Here, we investigated the impact of PEM on immune-mediated hepatic injuries using a murine model of Concanavalin A (Con A)-induced hepatitis, a well-established model for AIH. Mice received intraperitoneal PEM injections 3 times at 12-hour intervals, and two hours later, they were challenged with Con A. Liver samples and serum were collected after 10 h. The results indicate that PEM significantly improved mouse survival rates and lowered serum transaminase levels. Moreover, PEM effectively alleviated oxidative stress, reduced histopathological liver damage, and mitigated hepatocyte apoptosis. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-12, IL-1ß, and inducible nitric oxide synthase (iNOS), was also decreased. Finally, the results indicated that PEM regulates M1 macrophage activation by modulating the NF-κB signaling pathways. Overall, these results demonstrate that PEM effectively guards against immune-mediated hepatic injuries induced by Con A by inhibiting M1 macrophage activation through the NF-κB signaling pathways and indicate the potential of PEM as a practical treatment option for AIH in clinical settings.


Subject(s)
Hepatitis, Autoimmune , Neoplasms , Animals , Mice , NF-kappa B/metabolism , Concanavalin A , Pemetrexed , Macrophage Activation , Cytokines/metabolism , Interleukin-6
5.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37791375

ABSTRACT

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

6.
Front Pharmacol ; 14: 1282357, 2023.
Article in English | MEDLINE | ID: mdl-37886134

ABSTRACT

The biological clock system is an intrinsic timekeeping device that integrates internal physiology and external cues. Maintaining a healthy biological clock system is crucial for life. Disruptions to the body's internal clock can lead to disturbances in the sleep-wake cycle and abnormalities in hormone regulation, blood pressure, heart rate, and other vital processes. Long-term disturbances have been linked to the development of various common major diseases, including cardiovascular diseases, metabolic disorders, tumors, neuropsychiatric conditions, and so on. External factors, such as the diurnal rhythm of light, have a significant impact on the body's internal clock. Additionally, as an important non-photic zeitgeber, exercise can regulate the body's internal rhythms to a certain extent, making it possible to become a non-drug intervention for preventing and treating circadian rhythm disorders. This comprehensive review encompasses behavioral, physiological, and molecular perspectives to provide a deeper understanding of how exercise influences circadian rhythms and its association with related diseases.

7.
J Mol Cell Cardiol ; 181: 15-30, 2023 08.
Article in English | MEDLINE | ID: mdl-37244057

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is a progressive and lethal disease characterized by continuous proliferation of pulmonary arterial smooth muscle cell (PASMCs) and increased pulmonary vascular remodeling. Maresin-1 (MaR1) is a member of pro-resolving lipid mediators and exhibits protective effects on various inflammation-related diseases. Here we aimed to study the role of MaR1 in the development and progression of PAH and to explore the underlying mechanisms. METHODS AND RESULTS: We evaluated the effect of MaR1 treatment on PAH in both monocrotaline (MCT)-induced rat and hypoxia+SU5416 (HySu)-induced mouse models of pulmonary hypertension (PH). Plasma samples were collected from patients with PAH and rodent PH models to examine MaR1 production. Specific shRNA adenovirus or inhibitors were used to block the function of MaR1 receptors. The data showed that MaR1 significantly prevented the development and blunted the progression of PH in rodents. Blockade of the function of MaR1 receptor ALXR, but not LGR6 or RORα, with BOC-2, abolished the protective effect of MaR1 against PAH development and reduced its therapeutic potential. Mechanistically, we demonstrated that the MaR1/ALXR axis suppressed hypoxia-induced PASMCs proliferation and alleviated pulmonary vascular remodeling by inhibiting mitochondrial accumulation of heat shock protein 90α (HSP90α) and restoring mitophagy. CONCLUSION: MaR1 protects against PAH by improving mitochondrial homeostasis through ALXR/HSP90α axis and represents a promising target for PAH prevention and treatment.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Rats , Animals , Pulmonary Arterial Hypertension/metabolism , Heat-Shock Proteins/adverse effects , Heat-Shock Proteins/metabolism , Vascular Remodeling , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension , Hypertension, Pulmonary/metabolism , Pulmonary Artery , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , Monocrotaline , Disease Models, Animal
8.
PLoS One ; 18(5): e0285264, 2023.
Article in English | MEDLINE | ID: mdl-37141293

ABSTRACT

Dental size variation in modern humans has been assessed from regional to worldwide scales, especially under microevolutionary and forensic contexts. Despite this, populations of mixed continental ancestry such as contemporary Latin Americans remain unexplored. In the present study we investigated a large Latin American sample from Colombia (N = 804) and obtained buccolingual and mesiodistal diameters and three indices for maxillary and mandibular teeth (except third molars). We evaluated the correlation between 28 dental measurements (and three indices) with age, sex and genomic ancestry (estimated using genome-wide SNP data). In addition, we explored correlation patterns between dental measurements and the biological affinities, based on these measurements, between two Latin American samples (Colombians and Mexicans) and three putative parental populations: Central and South Native Americans, western Europeans and western Africans through PCA and DFA. Our results indicate that Latin Americans have high dental size diversity, overlapping the variation exhibited by the parental populations. Several dental dimensions and indices have significant correlations with sex and age. Western Europeans presented closer biological affinities with Colombians, and the European genomic ancestry exhibited the highest correlations with tooth size. Correlations between tooth measurements reveal distinct dental modules, as well as a higher integration of postcanine dentition. The effects on dental size of age, sex and genomic ancestry is of relevance for forensic, biohistorical and microevolutionary studies in Latin Americans.


Subject(s)
Racial Groups , Tooth , Humans , Genomics , Hispanic or Latino , Racial Groups/genetics , Tooth/anatomy & histology
9.
Inflammation ; 46(3): 1118-1130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37095260

ABSTRACT

Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.


Subject(s)
Liver , Nucleotidyltransferases , Mice , Animals , Concanavalin A/toxicity , Concanavalin A/metabolism , Liver/metabolism , Nucleotidyltransferases/metabolism , Mice, Knockout , Chemotaxis, Leukocyte , Mice, Inbred C57BL
10.
Sheng Li Xue Bao ; 75(2): 279-290, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37089102

ABSTRACT

Circadian clock is an internal mechanism evolved to adapt to cyclic environmental changes, especially diurnal changes. Keeping the internal clock in synchronization with the external clock is essential for health. Mismatch of the clocks due to phase shift or disruption of molecular clocks may lead to circadian disorders, including abnormal sleep-wake cycles, as well as disrupted rhythms in hormone secretion, blood pressure, heart rate, body temperature, etc. Long-term circadian disorders are risk factors for various common critical diseases such as metabolic diseases, cardiovascular diseases, and tumor. To prevent or treat the circadian disorders, scientists have conducted extensive research on the function of circadian clocks and their roles in the development of diseases, and screened hundreds of thousands of compounds to find candidates to regulate circadian rhythms. In addition, melatonin, light therapy, exercise therapy, timing and composition of food also play a certain role in relieving associated symptoms. Here, we summarized the progress of both drug- and non-drug-based approaches to prevent and treat circadian clock disorders.


Subject(s)
Circadian Clocks , Melatonin , Circadian Rhythm , Melatonin/physiology
11.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36708165

ABSTRACT

The preparation of Escherichia coli competent cells by calcium chloride is a common method in molecular biology, but the mechanism is poorly understood. In a previous study, using transcriptomics and proteomics approaches, we found that the expression pattern of the gene loiP was upregulated by CaCl2. In order to investigate the function of the loiP gene in Ca2+- mediated formation of competent cells of E. coli DH5α, the loiP gene deletion strains were constructed by the lambda-derived Red homologous recombination technique. Then, the cell morphology, transformation efficiency, and cell membrane changes of the competent cells of the mutant strain were further explored. Compared with the wild-type E. coli DH5α, the mutant strains have no significant differences in the morphology, growth characteristics, and the permeability of the intracellular membrane. However, the transformation efficiencies of the mutant strains to plasmids of different sizes were significantly reduced, and the permeability of the outer membrane decreased by 2.94 times. These results indicate that the deletion of gene loiP may directly affect the transformation efficiency and outer membrane permeability of E. coli competent cells.


Subject(s)
Calcium , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Calcium/metabolism , Cell Membrane Permeability , Plasmids , Ions/metabolism , Permeability
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166572, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36252941

ABSTRACT

Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine ß-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Mice , Animals , Kidney/pathology , Fibrosis , Renal Insufficiency, Chronic/pathology , Homeostasis , Adenine , Glutathione/metabolism , Homocysteine/metabolism
13.
Appl Environ Microbiol ; 88(21): e0058722, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36255244

ABSTRACT

The molecular mechanism of the Ca2+-mediated formation of competent cells in Escherichia coli remains unclear. In this study, transcriptome and proteomics techniques were used to screen genes in response to Ca2+ treatment. A total of 333 differentially expressed genes (317 upregulated and 16 downregulated) and 145 differentially expressed proteins (54 upregulated and 91 downregulated) were obtained. These genes and proteins are mainly enriched in cell membrane components, transmembrane transport, and stress response-related functional terms. Fifteen genes with these functions, including yiaW, ygiZ, and osmB, are speculated to play a key role in the cellular response to Ca2+. Three single-gene deletion strains were constructed with the Red homologous recombination method to verify its function in genetic transformation. The transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. None of the three gene deletion strains changed in size, which is one of the main elements of microscopic morphology, but they exhibited different membrane permeabilities and transformation efficiencies. This study demonstrates that Ca2+-mediated competence formation in E. coli is not a simple physicochemical process and may involve the regulation of genes in response to Ca2+. This study lays the foundation for further in-depth analyses of the molecular mechanism of Ca2+-mediated transformation. IMPORTANCE Using transcriptome and proteome techniques and association analysis, we identified several key genes involved in the formation of Ca2+-mediated E. coli DH5α competent cells. We used Red homologous recombination technology to construct three single-gene deletion strains and found that the transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. These results proved that the genetic transformation process is not only a physicochemical process but also a reaction process involving multiple genes. These results suggest ways to improve the horizontal gene transfer mechanism of foodborne microorganisms and provide new ideas for ensuring the safety of food preservation and processing.


Subject(s)
Escherichia coli , Gene Transfer, Horizontal , Escherichia coli/genetics , Gene Knockout Techniques , Plasmids , Transformation, Genetic
14.
Ecotoxicol Environ Saf ; 244: 114046, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36057201

ABSTRACT

Splenomegaly is a symptom characterized by the presence of an enlarged spleen. The impact of environmental factors on splenomegaly is largely unknown. In this study, C57BL/6 mice were treated with 125 ppm or 1250 ppm lead (Pb) via drinking water for 8 wk, and the process of splenomegaly was evaluated. Treatment with 1250 ppm Pb, but not 125 ppm Pb, caused splenomegaly, which was associated with increased capacity for erythrocyte clearance. Intriguingly, Pb-caused splenomegaly was independent of lymphoid tissue inducer (LTi) cells, which produce lymphotoxins α and ß (LTα/ß) to activate endothelial cells and LT organizer (LTo) cells and drive the development of spleen physiologically. A direct action of Pb on endothelial cells and LTo cells did not impact their proliferation. On the other hand, during steady state, a tonic level of interferon (IFN)γ acted on endothelial cells and LTo cells to suppress splenomegaly, as IFNγ receptor (IFNγR)-deficient mice had enlarged spleens relative to wild-type mice; during Pb exposure, splenic IFNγ production was suppressed, thus leading to a loss of the inhibitory effect of IFNγ on splenomegaly. Mechanically, Pb acted on splenic CD4+ T cells to suppress IFNγ production, which impaired the Janus kinase (Jak)1/ signal transducer and activator of transcription (STAT)1 signaling in endothelial cells and LTo cells; the weakened Jak1/STAT1 signaling resulted in the enhanced nuclear factor-κB (NF-κB) signaling in endothelial cells and LTo cells, which drove their proliferation and caused splenomegaly. The present study reveals a previously unrecognized mechanism for the immunotoxicity of Pb, which may extend our current understanding for Pb toxicology.


Subject(s)
Drinking Water , Interferon-gamma , Animals , Endothelial Cells/metabolism , Interferon-gamma/pharmacology , Lead/pharmacology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation , Spleen , Splenomegaly/chemically induced
15.
Nutrients ; 14(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893879

ABSTRACT

Nowadays, more and more people are suffering from circadian disruption. However, there is no well-accepted treatment. Recently, time-restricted feeding (TRF) was proposed as a potential non-drug intervention to alleviate jet lag in mice, especially in mice treated with a 6-h advanced phase shift. Here, we challenged C57BL/6 mice with a 6-h delay phase shift or a 12-h shift (day-night reversal) combined with 6- or 12-h TRF within the dark phase and found the beneficial effects of given TRF strategies in certain phase-shifting situations. Although behavioral fitness did not correlate well with health status, none of the TRF strategies we used deteriorated lipopolysaccharide-induced sepsis. These findings improve our understanding of the benefits of TRF for adaptation to circadian disruption.


Subject(s)
Circadian Rhythm , Jet Lag Syndrome , Adaptation, Physiological , Animals , Fasting , Humans , Mice , Mice, Inbred C57BL
16.
Physiol Behav ; 255: 113917, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35853482

ABSTRACT

The mammalian circadian system has a plasticity in a certain range, rather than a strict 24-hour cycle, with considerable variations among species, strains, and ages. As the most widely used mouse strains in circadian research, C57BL/6 and BALB/c mice were well known to have different internal periods and responses to various non-24-hour light-dark cycles. However, their entrainable range of circadian behavior was not specifically studied, neither was the effect of aging. Besides, it is not well known if mice with appeared behavioral adaptation are really healthy. In the current study, we exposed C57BL/6 and BALB/c mice at 3 months and 18 months old to a series of short (T cycles < 24 h) and long (T cycles > 24 h) light-dark cycles. Wheel running activities were monitored continuously for calculation of the entrainable range and glucose homeostasis was investigated to reflect their health status. Our results showed that the range in both young and old C57BL/6 mice is between T23 and T26. By contrast, due to the strong adaptability to extreme LD cycles, the entrainable range on a circadian scale in both young and old BALB/c mice cannot be well determined. Despite the adaptation appeared at the behavioral level, glucose homeostasis revealed by glucose tolerance test and insulin tolerance test was impaired in mice upon T cycle treatment. In summary, our study explored the entrainment range in two popular mouse strains and suggested that behavioral adaptation may not well reflect their health status.


Subject(s)
Light , Motor Activity , Animals , Circadian Rhythm/physiology , Glucose , Mammals , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/physiology , Photoperiod
17.
J Am Heart Assoc ; 11(13): e025021, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35730615

ABSTRACT

Background Mice with cardiomyocyte-specific deletion of Bmal1, a core clock gene, had spontaneous abnormal cardiac metabolism, dilated cardiomyopathy, and shortened lifespan. However, the role of cardiomyocyte Bmal1 in pressure overload induced cardiac remodeling is unknown. Here we aimed to understand the contribution of cardiomyocyte Bmal1 to cardiac remodeling in response to pressure overload induced by transverse aortic constriction or chronic angiotensin Ⅱ (AngⅡ) infusion. Methods and Results By generating a tamoxifen-inducible cardiomyocyte-specific Bmal1 knockout mouse line (cKO) and challenging the mice with transverse aortic constriction or AngⅡ, we found that compared to littermate controls, the cKO mice displayed remarkably increased cardiac hypertrophy and augmented fibrosis both after transverse aortic constriction and AngⅡ induction, as assessed by echocardiographic, gravimetric, histologic, and molecular analyses. Mechanistically, RNA-sequencing analysis of the heart after transverse aortic constriction exposure revealed that the PI3K/AKT signaling pathway was significantly activated in the cKOs. Consistent with the in vivo findings, in vitro study showed that knockdown of Bmal1 in cardiomyocytes significantly promoted phenylephrine-induced cardiomyocyte hypertrophy and triggered fibroblast-to-myofibroblast differentiation, while inhibition of AKT remarkedly reversed the pro-hypertrophy and pro-fibrosis effects of Bmal1 knocking down. Conclusions These results suggest that postnatal deletion of Bmal1 in cardiomyocytes may promote pressure overload-induced cardiac remodeling. Moreover, we identified PI3K/AKT signaling pathway as the potential mechanistic ties between Bmal1 and cardiac remodeling.


Subject(s)
ARNTL Transcription Factors/metabolism , Myocytes, Cardiac , Ventricular Remodeling , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/metabolism , Disease Models, Animal , Fibrosis , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
18.
Hypertension ; 79(6): 1190-1202, 2022 06.
Article in English | MEDLINE | ID: mdl-35296155

ABSTRACT

BACKGROUND: The collecting duct (CD) is a major site of both biosynthesis and action of prostaglandin E2 as highlighted by the predominant expression of COX-2 (cyclooxygenase-2) and some E-prostanoid (EP) subtypes at this nephron site. The purpose of this study was to determine the relevance and mechanism of CD COX-2/prostaglandin E2/EP1 signaling for the regulation of Na+ hemostasis during Na+ depletion. METHODS: Mice with Aqp2Cre-driven deletion of COX-2 (COX-2fl/flAqp2Cre+) or the EP1 subtype (EP1fl/flAqp2Cre+) were generated and the Na+-wasting phenotype of these mice during low-salt (LS) intake was examined. EP subtypes responsible for prostaglandin E2-induced local renin response were analyzed in primary cultured mouse inner medullary CD cells. RESULTS: Following 28-day LS intake, COX-2fl/flAqp2Cre+ mice exhibited a higher urinary Na+ excretion and lower cumulative Na+ balance, accompanied with suppressed intrarenal renin, AngII (angiotensin II), and aldosterone, expression of CYP11B2 (cytochrome P450 family 11 subfamily B member 2), and blunted expression of epithelial sodium channel subunits compared to floxed controls (COX-2fl/flAqp2Cre-), whereas no differences were observed for indices of systemic renin-angiotensin-aldosterone system. In cultured CD cells, exposure to prostaglandin E2 stimulated release of soluble (pro)renin receptor, prorenin/renin and aldosterone and the stimulation was more sensitive to antagonism of EP1 as compared other EP subtypes. Subsequently, EP1fl/flAqp2Cre+ mice largely recapitulated Na+-wasting phenotype seen in COX-2fl/flAqp2Cre+ mice. CONCLUSIONS: The study for the first time reports that CD COX-2/EP1 pathway might play a key role in maintenance of Na+ homeostasis in the face of Na+ depletion, at least in part, through activation of intrarenal renin-angiotensin-aldosterone-system and epithelial sodium channel.


Subject(s)
Renin-Angiotensin System , Renin , Aldosterone/metabolism , Animals , Cyclooxygenase 2/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Mice , Prostaglandins/metabolism , Renin/metabolism , Renin-Angiotensin System/physiology
19.
Toxicol Sci ; 186(2): 309-322, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35134237

ABSTRACT

Cadmium (Cd) is a highly toxic heavy metal in our environment. The influence of Cd on the development of platelets, or megakaryocytopoiesis, remains to be defined. The aim of this study was to investigate the impact of Cd on megakaryocytopoiesis. C57BL/6 (B6) mice aged 6-8 weeks were treated with 10 ppm Cd via drinking water or control for 3 months, and megakaryocytopoiesis was evaluated thereafter. Mice treated with Cd had a decreased number of platelets in the blood, which was associated with the reduced number of megakaryocyte progenitors (MkP) and megakaryocytes (MK) in the bone marrow (BM). Functional analyses indicate that Cd treatment impaired the proliferation and differentiation of MkP as well as the maturation of MK in the BM, suggesting that Cd treatment impeded megakaryocytopoiesis. Intriguingly, the impaired megakaryocytopoiesis in the BM of mice treated with Cd was not caused by increased apoptosis of MkP. Moreover, in vitro treatment of MkP with Cd did not impact their proliferation or differentiation, indicating that the impeded megakaryocytopoiesis in the BM of mice was likely not caused by direct action of Cd on MkP. On the other hand, Cd treatment selectively suppressed thrombopoietin (TPO) production in the BM and decreased the cellular myelocytomatosis oncogene signaling in MkP, thus likely leading to the impeded megakaryocytopoiesis in the BM and thrombocytopenia in the blood of mice. This study revealed a previously unrecognized hematopoietic toxicity of Cd, which may extend our current understanding of Cd toxicity.


Subject(s)
Thrombopoiesis , Thrombopoietin , Animals , Bone Marrow , Cadmium/toxicity , Mice , Mice, Inbred C57BL
20.
Biomolecules ; 11(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34207942

ABSTRACT

Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.


Subject(s)
Blood Pressure/physiology , Cardiovascular Diseases/physiopathology , Circadian Rhythm/physiology , Kidney Diseases/physiopathology , Cardiovascular Diseases/metabolism , Cardiovascular System/physiopathology , China , Humans , Hypertension/physiopathology , Kidney/physiopathology , Kidney Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...