Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 13: 989755, 2022.
Article in English | MEDLINE | ID: mdl-36531401

ABSTRACT

Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were applied to analyze metabolites in perilla leaves (PLs) during its developmental process. In total, 118 metabolites were identified, including volatile and non-volatile compounds, such as terpenoids, sugars, amino acids, organic acids, fatty acids, phenolic acids, flavonoids, and others. Principal component analysis (PCA) indicated great variations of metabolites during PLs development. Clustering analysis (CA) clarified the dynamic patterns of the metabolites. The heatmap of CA showed that most of the detected metabolites were significantly accumulated at stage 4 which is the pre anthesis period, and declined afterwards. The results of the present study provide a comprehensive overview of the metabolic dynamics of developing PLs which suggested that pre anthesis period is the best harvest time for PLs.

2.
Article in English | MEDLINE | ID: mdl-36371964

ABSTRACT

The rhizome of Dioscorea nipponica Makino (RDN) is a widely used herbal medicine, which has significant anti-inflammatory activities on various inflammatory diseases. However, the bioactive compositions responsible for the anti-inflammatory activity of RDN are still unknown. This study aimed to identify the anti-inflammatory bioactive compounds in RDN using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS), quantitative analysis of multiple components by single marker (QAMS) and chemometric methods. Firstly, an HPLC-Q/TOF-MS method was employed for identification of bioactive steroidal saponins in RND, and a total of twelve steroid saponins were identified. Then, QAMS method was employed to determine the contents of seven bioactive steroidal saponins, including protodioscin, protogracillin, methyl protodioscin, pseudoprotodioscin, pseudoprogracillin, dioscin and gracillin in RND samples using dioscin as the reference analyte. The anti-inflammatory effects of RDN samples were then evaluated by inhibition of NO production in LPS-induced RAW264.7 cells. Furthermore, chemometric methods, including Pearson correlation analysis and partial least squares regression (PLSR) were employed to investigate the correlations between chemical components and anti-inflammatory activities, and explore the potential anti-inflammatory bioactive compounds of RDN. The results indicated that protodioscin, dioscin and gracillin were selected as the major anti-inflammatory compounds in RND. The further verification experiments showed that protodioscin, dioscin and gracillin exhibited great inhibition on NO production with IC50 values (the half maximal inhibitory concentration) of 0.712 µM, 0.469 µM and 0.815 µM, respectively. They also significantly reduced the levels of TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. The present study provided evidences for the anti-inflammatory activity of RND and identification of the anti-inflammatory components in RDN.


Subject(s)
Dioscorea , Saponins , Dioscorea/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry , Lipopolysaccharides , Chemometrics , Saponins/analysis , Anti-Inflammatory Agents/pharmacology
3.
Phytochem Anal ; 33(5): 776-791, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35470493

ABSTRACT

INTRODUCTION: Angelica dahurica(BZ) and Angelica dahurica var. formosana(HBZ) are two plant sources of Angelicae dahuricae Radix. Although BZ and HBZ are commonly used herbal medicines with great medicinal and dietary values, study on their phytochemicals and bioactive compositions is limited. OBJECTIVE: To compare the chemical compositions of BZ and HBZ and find the chemical makers for discrimination and quality evaluation of the two botanical origins of Angelicae dahuricae Radix. METHODOLOGY: A high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for chemical profiling of BZ and HBZ. Then, a quantitative analysis of multiple components by a single marker method was developed for simultaneous determination of nine bioactive coumarins (xanthotoxol, oxypeucedanin hydrate, byakangelicin, xanthotoxin, bergapten, oxypeucedanin, phellopterin, imperatorin and isoimperatorin). Moreover, chemometrics were performed to compare and discriminate BZ and HBZ samples. RESULTS: A total of 30 coumarins compounds were identified, and the chemical compositions in BZ and HBZ were quite similar. The quantitative analysis showed that there were significant differences in the contents of bioactive coumarins, and the chemometric analysis indicated five coumarins (xanthotoxol, xanthotoxin, bergapten, phellopterin and isoimperatorin) were responsible for the significant differences between BZ and HBZ, which could be used as chemical markers to distinguish the two original plant sources of Angelicae dahuricae Radix. CONCLUSION: The present work provided useful information for understanding the chemical differences between BZ and HBZ and also provided feasible methods for quality evaluation and discrimination of herbal medicines originating from multiple botanical sources.


Subject(s)
Angelica , Drugs, Chinese Herbal , Plants, Medicinal , 5-Methoxypsoralen , Angelica/chemistry , Chromatography, High Pressure Liquid/methods , Coumarins/analysis , Drugs, Chinese Herbal/chemistry , Mass Spectrometry , Methoxsalen/analysis , Plant Roots/chemistry
4.
Zhongguo Zhong Yao Za Zhi ; 47(1): 54-61, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178911

ABSTRACT

Forsythiae Fructus is the dried fruit of Forsythia suspensa and the volatile compounds are its main bioactive components. According to the different harvest periods, F. suspensa can be divided into Qingqiao(mature F. suspensa) and Laoqiao(ripe F. suspensa). To investigate dynamic changes of volatile components in Qingqiao and Laoqiao samples collected at different periods, the present study extracted and analyzed the total volatile oils in Qingqiao and Laoqiao samples(four harvest periods for Qingqiao and two for Laoqiao) by steam distillation method. The results indicated that the content of volatile oils in F. suspensa samples at different harvest periods was significantly different. The content of volatile oils in Qingqiao samples(except those harvested in the first period) was higher than that of Laoqiao, and the content of volatile oils in both Qingqiao and Laoqiao increased with the harvest period. Furthermore, volatile compounds in F. suspensa were qualitatively analyzed by the gas chromatography-mass spectrometry(GC-MS), and 28 volatile compounds were identified. Chemometrics analyses including principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were further applied to explore differential markers and dynamic changes of volatile components in Qingqiao and Laoqiao samples at different harvest periods. Finally, four volatile compounds, including α-pinene, sabinene, ß-pinene, and 4-terpenol were selected as potential differential markers. The relative content of α-pinene and 4-terpenol was consistent with that of total volatile oils in the changing trend.


Subject(s)
Forsythia , Oils, Volatile , Chemometrics , Fruit , Gas Chromatography-Mass Spectrometry
5.
Front Pharmacol ; 12: 675396, 2021.
Article in English | MEDLINE | ID: mdl-34025435

ABSTRACT

Pancreatic lipase is a key lipase for triacylglyceride digestion and absorption, which is recognized as a promising target for treatment of metabolic disorders. Natural phytochemicals are hopeful sources for pancreatic lipase inhibitors. The leaves of Artemisia argyi H.Lév. and Vaniot (AL) is commonly used as herbal medicine or food supplement in China and other Asian countries for hundreds of years. AL mainly contains essential oils, phenolic acids, flavonoids and terpenoids, which exhibit many pharmacological activities such as antioxidant, anti-inflammatory, antimicrobial, analgetic, anti-cancer, anti-diabetes and immunomodulatory effects. However, the anti-lipase activity of AL was lack of study and the investigation of anti-lipase ingredients from AL was also insufficient. In the present study, the anti-lipase activity of AL was evaluated in vitro and the potentially pancreatic lipase inhibitors of AL were investigated. High performance liquid chromatography was used to establish fingerprints of AL samples, and fifteen peaks were selected. The anti-lipase activities of AL samples were evaluated by a pancreatic lipase inhibition assay. Then, the spectrum-effect relationships between fingerprints and pancreatic lipase inhibitory activities were investigated to identify the anti-lipase constitutes in AL. As the results, four caffeoylquinic acids, which were identified as neochlorogenic acid, chlorogenic acid, isochlorogenic acid B, and isochlorogenic acid A by high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, were selected as potential pancreatic lipase inhibitors in AL. Moreover, anti-lipase activity assessment and molecular docking study of the four compounds were performed to validate the potential lipase inhibitors in AL. The results revealed that the four caffeoylquinic acids in AL as bioactive compounds displayed with anti-lipase activity. The present research provided evidences for the anti-lipase activity of AL, and suggested that some bioactive compounds in AL could be used as lead compounds for discovering of new pancreatic lipase inhibitors.

6.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916390

ABSTRACT

In the present study, a simple and environmentally friendly extraction method based on natural deep eutectic solvents (NADESs) was established to extract four bioactive steroidal saponins from Dioscoreae Nipponicae Rhizoma (DNR). A total of twenty-one types of choline chloride, betaine, and L-proline based NADESs were tailored, and the NADES composed of 1:1 molar ratio of choline chloride and malonic acid showed the best extraction efficiency for the four steroidal saponins compared with other NADESs. Then, the extraction parameters for extraction of steroidal saponins by selected tailor-made NADES were optimized using response surface methodology and the optimal extraction conditions are extraction time, 23.5 min; liquid-solid ratio, 57.5 mL/g; and water content, 54%. The microstructure of the DNR powder before and after ultrasonic extraction by conventional solvents (water and methanol) and the selected NADES were observed using field emission scanning electron microscope. In addition, the four steroidal saponins were recovered from NADESs by D101 macroporous resin with a satisfactory recovery yield between 67.27% and 79.90%. The present research demonstrates that NADESs are a suitable green media for the extraction of the bioactive steroidal saponins from DNR, and have a great potential as possible alternatives to organic solvents for efficiently extracting bioactive compounds from natural products.


Subject(s)
Dioscorea/chemistry , Liquid-Liquid Extraction/methods , Phytochemicals/isolation & purification , Saponins/isolation & purification , Choline/chemistry , Factor Analysis, Statistical , Green Chemistry Technology , Malonates/chemistry , Molecular Structure , Phytochemicals/chemistry , Plant Extracts/chemistry , Rhizome/chemistry
7.
J AOAC Int ; 104(2): 515-525, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33580684

ABSTRACT

BACKGROUND: Artemisiae argyi Folium (AF) has been used as herbal medicine and a food supplement in China and other Asian countries. There is no report about whether the different developmental stages can influence the bioactive compositions of AF. OBJECTIVE: To investigate the dynamic changes of bioactive constituents of AF collected at different developmental stages. METHOD: The volatile and nonvolatile bioactive components in AF collected at six different developmental stages were analyzed by gas chromatography-mass spectrometry and (GC-MS) high-performance liquid chromatography (HPLC). Chemometrics analysis, including principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA), were further performed to compare and discriminate the AF samples based on the analysis results. RESULTS: The results indicated the bioactive compositions in AF underwent obvious changes during the period of growth. The volatile compositions of AF collected at different stages were the same, while their relative contents were different. Six volatile compounds could be regarded as chemical markers, which were responsible for the intergroup differences. The phenolic profiles of AF at different stages indicated a similar composition when the content levels of the main phenolic compounds were variated. CONCLUSIONS: The comparative results will facilitate better understanding of dynamic changes of bioactive constituents of AF samples collected at different stages and will provide useful information for cultivation and utilization of this herbal medicine. HIGHLIGHTS: The volatile and nonvolatile bioactive components in AF collected at different developmental stages were evaluated and compared for the first time.


Subject(s)
Artemisia , China , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Plant Leaves
8.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2417-2424, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32495601

ABSTRACT

Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for a long time. Qiai is one of the top-geoherb of Artemisiae Argyi Folium. Qiai contains various bioactive constituents, such as volatile oils, phenolic acids, flavonoids and terpenoids. Phytochemical studies demonstrated that volatile compounds are the main bioactive constituents in Qiai. Try to investigate dynamic changes of volatile components of Qiai from different harvest time and explore the optimum harvest time of Qiai, in this study, the contents of total volatile oils in Qiai collected from five different harvest time were analyzed by steam distillation method. The results showed that the contents of volatile oils of Qiai were higher in the third harvest time(around the Dragon Boat Festival), which is basically consistent with the traditional harvest time. Furthermore, a sensitive method based on gas chromatography-mass spectrometry(GC-MS) was established for qualitative analysis of volatile compounds in Qiai, and a total of thirty volatile compounds were identified. Chemometrics methods including principal component analysis(PCA) and orthogonal partial least-squares discriminate analysis(OPLS-DA) were applied to explore chemical markers and dynamic changes of volatile components in Qiai from different harvest time, and the results indicated that there were obvious differences in the relative contents of volatile compounds of Qiai samples from different harvest time. Eight volatile compounds, including α-terpinene, γ-terpinene, D-camphor, trans-carveol, α-copaene, isobornylisobutyrate, humulene, and caryophyllene oxide were selected as potential chemical markers. Among the eight chemical markers, the relative contents of α-terpinene, γ-terpinene, α-copaene and caryophyllene oxide were higher in the third harvest period(around the Dragon Boat Festival), which is consistent with the contents of total volatile oils. The present study could provide the basis for investigating the optimum harvest time of Qiai, and might be useful for the quality control of this herbal medicine.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Oils, Volatile , Flavonoids , Gas Chromatography-Mass Spectrometry
9.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5433-5440, 2019 Dec.
Article in Chinese | MEDLINE | ID: mdl-32237391

ABSTRACT

Artemisiae Argyi Folium,the dried leaves of Artemisia argyi,has been widely used in traditional Chinese and folk medicines for a long time. Qiai is one of the top-geoherb of Artemisiae Argyi Folium. Trying to investigate dynamic changes of chemical components of Qiai in different harvest periods and explore the optimum harvest time of Qiai,in this study,the contents of total flavonoids and total phenolic acids of 36 batches of Qiai collected in 6 different harvest periods were analyzed by ultraviolet-visible spectrophotometry. Furthermore,an HPLC method was applied for simultaneous determination of eight bioactive compounds including six phenolic acids( 5-caffeoylquinic acid,3-caffeoylquinic acid,4-caffeoylquinic acid,3,4-di-O-caffeoylquinic acid,3,5-di-O-caffeoylquinic acid and 4,5-di-O-caffeoylquinic acid) and two flavonoids( jaceosidin and eupatilin) in Qiai samples. The quantitative results indicated that there were some differences in the contents of total flavonoids,total phenolic acids and bioactive compounds of Qiai samples in different harvest periods. The dynamic changes of total flavonoids and total phenolic acids of Qiai in different harvest periods were consistent. The contents of total flavonoids and total phenolic acids of Qiai samples were higher in the third harvest period( around the Dragon Boat Festival),which is basically consistent with the traditional harvest periods. This present study can provide the basis for determining the suitable harvest time of Qiai,and might be useful for the quality evaluation of this herbal medicine.


Subject(s)
Artemisia/chemistry , Drugs, Chinese Herbal/chemistry , Plant Leaves/chemistry , Chromatography, High Pressure Liquid , Flavonoids/analysis , Hydroxybenzoates/analysis , Spectrophotometry, Ultraviolet , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...