Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.973
Filter
1.
Drug Des Devel Ther ; 18: 1799-1810, 2024.
Article in English | MEDLINE | ID: mdl-38828025

ABSTRACT

Purpose: Oxycodone is a potent µ- and κ-opioid receptor agonist that can relieve both somatic and visceral pain. We assessed oxycodone- vs sufentanil-based multimodal analgesia on postoperative pain following major laparoscopic gastrointestinal surgery. Methods: In this randomised double-blind controlled trial, 40 adult patients were randomised (1:1, stratified by type of surgery) to receive oxycodone- or sufentanil-based multimodal analgesia, comprising bilateral transverse abdominis plane blocks, intraoperative dexmedetomidine infusion, flurbiprofen axetil, and oxycodone- or sufentanil-based patient-controlled analgesia. The co-primary outcomes were time-weighted average (TWA) of visceral pain (defined as intra-abdominal deep and dull pain) at rest and on coughing during 0-24 h postoperatively, assessed using the numerical rating scale (0-10) with a minimal clinically important difference of 1. Results: All patients completed the study (median age, 64 years; 65% male) and had adequate postoperative pain control. The mean (SD) 24-h TWA of visceral pain at rest was 1.40 (0.77) in the oxycodone group vs 2.00 (0.98) in the sufentanil group (mean difference=-0.60, 95% CI, -1.16 to -0.03; P=0.039). Patients in the oxycodone group had a significantly lower 24-h TWA of visceral pain on coughing (2.00 [0.83] vs 2.98 [1.26]; mean difference=-0.98, 95% CI, -1.66 to -0.30; P=0.006). In the subgroup analyses, the treatment effect of oxycodone vs sufentanil on the co-primary outcomes did not differ in terms of age (18-65 years or >65 years), sex (female or male), or type of surgery (colorectal or gastric). Secondary outcomes (24-h TWA of incisional and shoulder pain, postoperative analgesic usage, rescue analgesia, adverse events, and patient satisfaction) were comparable between groups. Conclusion: For patients undergoing major laparoscopic gastrointestinal surgery, oxycodone-based multimodal analgesia reduced postoperative visceral pain in a statistically significant but not clinically important manner. Trial Registration: Chinese Clinical Trial Registry (ChiCTR2100052085).


Subject(s)
Analgesics, Opioid , Laparoscopy , Oxycodone , Pain, Postoperative , Visceral Pain , Humans , Oxycodone/administration & dosage , Oxycodone/therapeutic use , Double-Blind Method , Middle Aged , Male , Female , Laparoscopy/adverse effects , Pain, Postoperative/drug therapy , Visceral Pain/drug therapy , Aged , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Adult , Digestive System Surgical Procedures/adverse effects , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Sufentanil/administration & dosage , Analgesia, Patient-Controlled , Flurbiprofen/analogs & derivatives
2.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831890

ABSTRACT

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

3.
Dalton Trans ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787658

ABSTRACT

A new Co4-added polyoxometalate (CoAP) Cs4[(Co(H2O)5)2{(µ2-Co(H2O)4)2Co4(H2O)2(B-α-GeW9O34)2}]·6H2O (1) has been made using a lacunary directing strategy under hydrothermal conditions. Single-crystal X-ray diffraction analysis demonstrated that 1 is a one-dimensional (1D) chain, in which CoAP is linked by cobalt-oxygen octahedra to form a 1D structure with excellent chemical stability. The visible light-driven H2 evolution test demonstrated that 1 has high activity, with an H2 evolution rate of 1485.95 µmol h-1 g-1. PXRD and FT-IR tests demonstrated that compound 1 exhibits excellent heterogeneous catalytic stability.

4.
Mater Horiz ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747452

ABSTRACT

The development of effective and novel flame retardants has been attracting considerable attention in extenuating the fire threat of flammable polymer materials including the widely-used epoxy resins. In this work, we pioneeringly report the construction of transition-metal-substituted polyoxometalate-ionic liquids (tmsPOM-ILs) as effective flame retardants, which consist of tetra-metal-containing POMs ([M4(H2O)2(PW9O34)2]10-, M4P2, M = Ni, Cu) anions and tetra-n-heptylammonium [(n-C7H15)4N+, THPA] cations. The resulting tmsPOM-ILs exhibited remarkably improved fire-safety of the epoxy resin (EP) matrix and even at a loading amount of as low as 3 wt%, the flame retardancy efficiency was even higher than that of commercial flame retardants (aluminum hydroxide (ATH), triphenyl phosphate (TPP), and decabromodiphenyl ethane (DBDPE)). Physicochemical and mechanistic studies revealed that the remarkable flame retardancy performance of the tmsPOM-ILs reported is due to their excellent epoxy matrix compatibility and remarkable catalytic charring ability. This work opens up a brand-new research direction of developing next-generation compatible and effective tmsPOM-based molecular flame retardants at the molecular level.

5.
Inorg Chem ; 63(20): 9026-9030, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38723292

ABSTRACT

Two metal borate-carbonates, M6[Cd2(CO3)2(B12O18)(OH)6] [M = K (1), Rb (2)], were obtained under surfactant-thermal conditions. In 1 and 2, each cyclic [(B12O18)(OH)6]6- anion captures two CdCO3 in two sides of the rings and finally forms the unusual (CdCO3)2@[(B12O18)(OH)6] cluster. Both 1 and 2 show moderate birefringence. Density functional theory calculations indicate that carbonate groups have a major contribution to electron-related optical transition.

6.
Food Chem ; 454: 139732, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38815327

ABSTRACT

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of flavonoids highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and flavonols (33.90 to 83.16 mg/kg FW). The volatile compounds with higher odor active value were selected to describe the aroma of spine grapes. Hexanal, (E)-2-hexenal and (E, Z)-2,6-nonadienal contributed to the higher herbaceous flavor to Baiputao and Ziqiu. ß-Damascenone and (E)-2-nonenal gave Baiputao a flavor with more floral, fruity and earthy. Their characteristic flavor compounds were subsequently revealed using multivariate statistical analysis. The results helped producers to further develop and utilize the spine grapes.

7.
Nanoscale ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819267

ABSTRACT

Three structurally new polyoxometalate-templated silver clusters, homometallic [(SiW9O34)@Ag24(iPrS)11(DPPP)6Cl]2(SiW12O40) (Ag24), heterometallic [(SiW9O34)@Ag22Cu(iPrS)11(DPPP)6Cl](SbF6)2 (Ag22Cu) and {Ag16(iPrS)6(DPPP)8(CH3COO)4[Co4(OH)3(H2O)SiW9O33]2}·(CH3CN)4 (Ag16Co8) (iPrS- = isopropanethiolate, DPPP = 1,3-bis(diphenylphosphino)propane, SbF6- = hexafluoroantimonate) have been successfully synthesized using a facile solvothermal approach. The introduction of copper and cobalt ions can induce obvious changes in the molecular configuration of the obtained clusters, leading to distinct temperature-dependent photoluminescence and photothermal conversion properties.

8.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
9.
Inorg Chem ; 63(19): 8919-8924, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38698558

ABSTRACT

The introduction of transition metal (TM) ions into polyoxometalates (POMs) cannot only bring about interesting structural diversities but also enable changes in properties. However, TM-containing Silverton-type polyoxomolybdates are still lacking in terms of structural diversity and application development. Herein, two Zn(II)-containing Silverton-type {UMo12O42}-based polyoxomolybdates, H1.89Na4.11(H2O)9Zn[UMo12O42]·4.5H2O (Zn-1) and H1.8Na4.2(H2O)12Zn[UMo12O42] (Zn-2) were hydrothermally synthesized, demonstrating a practical strategy to assembly of TM-containing Silverton-type POMs. Zn-1 is proven to be an excellent and recyclable heterogeneous catalyst in cross-dehydrogenation coupling of 1,4-naphthoquinones with amines reactions, and a series of 2-amino-1,4-naphthoquinones with potential medicinal value have been constructed.

10.
Langmuir ; 40(21): 11251-11262, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748644

ABSTRACT

Artificial photosynthesis for high-value hydrogen peroxide (H2O2) through a two-electron reduction reaction is a green and sustainable strategy. However, the development of highly active H2O2 photocatalysts is impeded by severe carrier recombination, ineffective active sites, and low surface reaction efficiency. We developed a dual optimization strategy to load dense Ni nanoparticles onto ultrathin porous graphitic carbon nitride (Ni-UPGCN). In the absence and presence of sacrificial agents, Ni-UPGCN achieved H2O2 production rates of 169 and 4116 µmol g-1 h-1 with AQY (apparent quantum efficiency) at 420 nm of 3.14% and 17.71%. Forming a Schottky junction, the surface-modified Ni nanoparticles broaden the light absorption boundary and facilitate charge separation, which act as active sites, promoting O2 adsorption and reducing the formation energy of *OOH (reaction intermediate). This results in a substantial improvement in both H2O2 generation activity and selectivity. The Schottky junction of dual modulation strategy provides novel insights into the advancement of highly effective photocatalytic agents for the photosynthesis of H2O2.

11.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598012

ABSTRACT

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Subject(s)
Arabidopsis , MicroRNAs , RNA, Long Noncoding , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , Abscisic Acid/pharmacology , Arabidopsis/genetics , Mannitol , MicroRNAs/genetics , RNA, Messenger , Triticum/genetics , Waxes
12.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607975

ABSTRACT

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Subject(s)
Chaperone-Mediated Autophagy , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Lipolysis , Up-Regulation , rab GTP-Binding Proteins/genetics , Lysosomal Membrane Proteins , RNA, Small Interfering
13.
Adv Mater ; : e2401476, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602334

ABSTRACT

While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI2) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI2 clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI2 clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI2 film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI2 and the organic salt. Surprisingly, the oversized residual PbI2 clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI2. Leveraging effective PbI2 management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability.

14.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38668147

ABSTRACT

Due to current issues of energy-level mismatch and low transport efficiency in commonly used electron transport layers (ETLs), such as TiO2 and SnO2, finding a more effective method to passivate the ETL and perovskite interface has become an urgent matter. In this work, we integrated a new material, the ionic liquid (IL) hexylammonium acetate (HAAc), into the SnO2/perovskite interface to improve performance via the improvement of perovskite quality formed by the two-step method. The IL anions fill oxygen vacancy defects in SnO2, while the IL cations interact chemically with Pb2+ within the perovskite structure, reducing defects and optimizing the morphology of the perovskite film such that the energy levels of the ETL and perovskite become better matched. Consequently, the decrease in non-radiative recombination promotes enhanced electron transport efficiency. Utilizing HAAc, we successfully regulated the morphology and defect states of the perovskite layer, resulting in devices surpassing 24% efficiency. This research breakthrough not only introduces a novel material but also propels the utilization of ILs in enhancing the performance of perovskite photovoltaic systems using two-step synthesis.

15.
Sensors (Basel) ; 24(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38676098

ABSTRACT

This paper designed and developed an online digital imaging excitation sensor for wind power gearbox wear condition monitoring based on an adaptive deep learning method. A digital imaging excitation sensing image information collection architecture for magnetic particles in lubricating oil was established to characterize the wear condition of mechanical equipment, achieving the real-time online collection of wear particles in lubricating oil. On this basis, a mechanical equipment wear condition diagnosis method based on online wear particle images is proposed, obtaining data from an engineering test platform based on a wind power gearbox. Firstly, a foreground segmentation preprocessing method based on the U-Net network can effectively eliminate the interference of bubbles and dark fields in online wear particle images, providing high-quality segmentation results for subsequent image processing, A total of 1960 wear particle images were collected in the experiment, the average intersection union ratio of the validation set is 0.9299, and the accuracy of the validation set is 0.9799. Secondly, based on the foreground segmentation preprocessing of wear particle images, by using the watered algorithm to obtain the number of particles in each size segment, we obtained the number of magnetic particle grades in three different ranges: 4-38 µm, 39-70 µm, and >70 µm. Thirdly, we proposed a method named multidimensional transformer (MTF) network. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are used to obtain the error, and the maintenance strategy is formulated according to the predicted trend. The experimental results show that the predictive performance of our proposed model is better than that of LSTM and TCN. Finally, the online real-time monitoring system triggered three alarms, and at the same time, our offline sampling data analysis was conducted, the accuracy of online real-time monitoring alarms was verified, and the gearbox of the wind turbine was shut down for maintenance and repair.

16.
J Am Chem Soc ; 146(18): 12734-12742, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38592928

ABSTRACT

Innovative surface-protecting ligands are in constant demand due to their crucial role in shaping the configuration, property, and application of gold nanoclusters. Here, the unprecedented O-ethyl dithiocarbonate (DTX)-stabilized atomically precise gold nanoclusters, [Au25(PPh3)10(DTX)5Cl2]2+ (Au25DTX-Cl) and [Au25(PPh3)10(DTX)5Br2]2+ (Au25DTX-Br), were synthesized and structurally characterized. The introduction of bidentate DTX ligands not only endowed the gold nanocluster with unique staggered Au25 nanorod configurations but also generated the symmetry breaking from the D5d geometry of the Au25 kernels to the chiral D5 configuration of the Au25 molecules. The chirality of Au25 nanorods was notably revealed through single-crystal X-ray diffraction, and chiral separation was induced by employing chiral DTX ligands. The staggered configurations of Au25 nanorods, as opposed to eclipsed ones, were responsible for the large red shift in the emission wavelengths, giving rise to a promising near-infrared II (NIR-II, >1000 nm) phosphorescence. Furthermore, their performances in photocatalytic sulfide oxidation and electrocatalytic hydrogen evolution reactions have been examined, and it has been demonstrated that the outstanding catalytic activity of gold nanoclusters is highly related to their stability.

17.
Chem Commun (Camb) ; 60(38): 5046-5049, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38634274

ABSTRACT

The dual-ligand strategy was employed to synthesize a new microporous material, [Zn3(SNDC)(AmTAZ)3(H2O)]·H2O·CH3CN (1), incorporating sulfonic acid and amino groups for enhancing gas adsorption and separation. The activated 1 (named 1a) exhibited selective adsorption of acetylene over carbon dioxide and methane. Hence, the dual-ligand strategy optimized the pore environment and provided an effective approach for pure separation of gases.

18.
Virol Sin ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636706

ABSTRACT

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.

19.
Chem Commun (Camb) ; 60(41): 5415-5418, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38683147

ABSTRACT

Two structurally new Lindqvist hexaniobate-templated silver thiolate clusters, [Nb6O19@Ag45(iPrS)23(CH3COO)14] (Ag45) and (H3O)4[Nb6O19@Ag41KS2.5O2(H2O)7.5(iPrS)24(CH3COO)5] (Ag41), were synthesized using a facile one-pot solvothermal approach. Single crystal X-ray diffraction analyses revealed the presence of a classical Lindqvist-type [Nb6O19]8- anion template, with iPrS- and CH3COO- surface-protecting ligands in both silver clusters, which can further form two-dimensional Ag45 assembly and one-dimensional Ag41 chain packing structures. Both Ag45 and Ag41 clusters exhibited intriguing photothermal conversion properties and temperature-dependent emission behavior.

20.
ChemSusChem ; : e202400732, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661456

ABSTRACT

Covalent organic frameworks (COFs) and their applications in photocatalysis have been extensively studied, but the instability of imine-linked COFs is an important factor limiting their performance. In this work, two imine-linked COFs were successfully converted to amide-linked COFs through post synthetic modification (PSM). The oxidized COFs presented lower binding energy to O2, exhibited higher photocatalytic activity for oxidation of thioethers and coupling of benzylamines with excellent stability. The present work can serve as a reliable reference for the development of novel highly active and stable COF-based photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...