Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202409782, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888844

ABSTRACT

A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newlydesigned acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technologybut also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.

2.
Cell Rep ; 43(7): 114387, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896777

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.

3.
Nat Commun ; 15(1): 5166, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886345

ABSTRACT

Boron-doped polycyclic aromatic hydrocarbons exhibit excellent optical properties, and regulating their photophysical processes is a powerful strategy to understand the luminescence mechanism and develop new materials and applications. Herein, an electrochemically responsive B-O dynamic coordination bond is proposed, and used to regulate the photophysical processes of boron-nitrogen-doped polyaromatic hydrocarbons. The formation of the B-O coordination bond under a suitable voltage is confirmed by experiments and theoretical calculations, and B-O coordination bond can be broken back to the initial state under opposite voltage. The whole process is accompanied by reversible changes in photophysical properties. Further, electrofluorochromic devices are successfully prepared based on the above electrochemically responsive coordination bond. The success and harvest of this exploration are beneficial to understand the luminescence mechanism of boron-nitrogen-doped polyaromatic hydrocarbons, and provide ideas for design of dynamic covalent bonds and broaden material types and applications.

4.
Adv Mater ; : e2312948, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813832

ABSTRACT

Colloidal quantum dots (QDs), as a class of 0D semiconductor materials, have generated widespread interest due to their adjustable band gap, exceptional color purity, near-unity quantum yield, and solution-processability. With decades of dedicated research, the potential applications of quantum dots have garnered significant recognition in both the academic and industrial communities. Furthermore, the related quantum dot light-emitting diodes (QLEDs) stand out as one of the most promising contenders for the next-generation display technologies. Although QD-based color conversion films are applied to improve the color gamut of existing display technologies, the broader application of QLED devices remains in its nascent stages, facing many challenges on the path to commercialization. This review encapsulates the historical discovery and subsequent research advancements in QD materials and their synthesis methods. Additionally, the working mechanisms and architectural design of QLED prototype devices are discussed. Furthermore, the review surveys the latest advancements of QLED devices within the display industry. The narrative concludes with an examination of the challenges and perspectives of QLED technology in the foreseeable future.

6.
Int J Gen Med ; 16: 3805-3814, 2023.
Article in English | MEDLINE | ID: mdl-37662502

ABSTRACT

Purpose: Coronary angiography-derived fractional flow reserve (caFFR) is a novel computational flow dynamics (CFD)-derived assessment of coronary vessel flow with good diagnostic performance. Herein, we performed a retrospective study to evaluate the reproducibility of caFFR findings between observers and investigate the diagnostic performance of caFFR for coronary stenosis defined as FFR ≤0.80, especially in the grey zone (0.75≤caFFR ≤0.80). Patients and Methods: A total of 150 patients (167 coronary vessels) underwent caFFR (with FlashAngio used for calculation of flow variables) and subsequent invasive fractional flow reserve (FFR) measurements. Outcomes, including reproducibility, were compared for vessels in and outside the grey zone. Results: The correlation of caFFR findings was good between the two laboratories (r = 0.723, p<0.001). The AUC of ROC were both high for caFFR-CoreLab1 and caFFR-CoreLab2 (0.975 and 0.883). The diagnostic accuracy, sensitivity, specificity, and negative and positive predictive values were not significantly different between the two laboratories (p>0.05). caFFR had a strong correlation with measures to FFR (r=0.911, p<0.001). There was no systematic difference between caFFR and FFR on Bland-Altman analysis in and outside the grey zone. There was no difference in diagnostic accuracy between the grey and non-grey zones in the prediction of FFR ≤0.80 (p=0.09). Conclusion: The inter-observer reproducibility for caFFR was high, and the diagnostic accuracy of caFFR was good compared to that of FFR.

7.
Nat Commun ; 14(1): 4274, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460463

ABSTRACT

The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis. The proteomic and phosphoproteomic analysis further highlights the responsibility of mTOR signaling for non-response to Sunitinib. Immune landscape characterization reveals diverse tumor microenvironment subsets in ccRCC. Finally, we construct a multi-omics classifier that can detect responder and non-responder patients (receiver operating characteristic-area under the curve, 0.98). Our study highlights associations between ccRCC molecular characteristics and the response to TKI, which can facilitate future improvement of therapeutic responses.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Sunitinib/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proteomics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/genetics , Tumor Microenvironment
8.
Nat Commun ; 13(1): 7494, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470859

ABSTRACT

Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Microphthalmos , Proteogenomics , Humans , Carcinoma, Renal Cell/pathology , Transcription Factors/genetics , Microphthalmos/genetics , Proteomics , Kidney Neoplasms/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Translocation, Genetic
9.
Materials (Basel) ; 15(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431521

ABSTRACT

Sintering aid was very crucial to influence the microstructure and thus the optical property of the sintered optical ceramics. The purpose of this work was to explain the difference between the sintering aids of Li+ and Y3+ on Al23O27N5 (AlON) ceramic via reaction sintering method. The effects of LiAl5O8 (LA) and Y2O3 on the sintering of Al2O3-AlN system were carefully compared, in terms of X-ray diffraction (XRD), microstructure, density, X-ray photoelectron spectroscopy (XPS) and optical transmittance. According to the XPS and XRD lattice analysis, the chemical structure of the materials was not obviously affected by different dopants. We firstly reported that, there was obvious volume expansion in the Y3+ dopped AlON ceramics, which was responsible for the low transparency of the ceramics. Obvious enhancements were achieved using Li+ aids from the results that Li: AlONs showing a higher transparency and less optical defects. A higher LA content (20 wt%) was effective to remove pores and thus obtain a higher transmittance (~86.8% at ~3.5 µm). Thus, pores were the main contributions to the property difference between the dopant samples. The importance of sintering aids should be carefully realized for the reaction sintering fabrication of AlON based ceramics towards high transparency.

10.
Adv Sci (Weinh) ; 9(26): e2202636, 2022 09.
Article in English | MEDLINE | ID: mdl-35861377

ABSTRACT

Flexible circularly polarized luminescence (CPL) switching devices have been long-awaited due to their promising potential application in wearable optoelectronic devices. However, on account of the few materials and complicated design of manufacturing systems, how to fabricate a flexible electric-field-driven CPL-switching device is still a serious challenge. Herein, a flexible device with multiple optical switching properties (CPL, circular dichroism (CD), fluorescence, color) is designed and prepared efficiently based on proton-coupled electron transfer (PCET) mechanism by optimizing the chiral structure of switching molecule. More importantly, this device can maintain the switching performance even after 300 bending-unbending cycles. It has a remarkable comprehensive performance containing bistable property, low open voltage, and good cycling stability. Then, prototype devices with designed patterns have been fabricated, which opens a new application pattern of CPL-switching materials.


Subject(s)
Luminescence , Protons , Circular Dichroism , Electron Transport , Electrons
11.
Nat Commun ; 13(1): 2052, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440542

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of renal cancer. Here we conduct a comprehensive proteogenomic analysis of 232 tumor and adjacent non-tumor tissue pairs from Chinese ccRCC patients. By comparing with tumor adjacent tissues, we find that ccRCC shows extensive metabolic dysregulation and an enhanced immune response. Molecular subtyping classifies ccRCC tumors into three subtypes (GP1-3), among which the most aggressive GP1 exhibits the strongest immune phenotype, increased metastasis, and metabolic imbalance, linking the multi-omics-derived phenotypes to clinical outcomes of ccRCC. Nicotinamide N-methyltransferase (NNMT), a one-carbon metabolic enzyme, is identified as a potential marker of ccRCC and a drug target for GP1. We demonstrate that NNMT induces DNA-dependent protein kinase catalytic subunit (DNA-PKcs) homocysteinylation, increases DNA repair, and promotes ccRCC tumor growth. This study provides insights into the biological underpinnings and prognosis assessment of ccRCC, revealing targetable metabolic vulnerabilities.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , China , Female , Humans , Kidney Neoplasms/pathology , Male
12.
ACS Nano ; 16(1): 148-159, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34898188

ABSTRACT

Circular dichroism (CD) chiral sensing is very promising to meet the ever-increasing demands for high-throughput chiral analysis in asymmetric synthesis. However, it is still very challenging to sensitively quantify the composition of enantiomers in a wide concentration range because the existing sensing systems show either linear CD response resultant from stoichiometric chiral transfer or nonlinear CD response resultant from amplified chiral transfer and thus have the drawbacks of low sensitivity and narrow quantification range, respectively. Herein, we propose a sensing system of two-dimensional (2D) Au(I)-thiolate nanosheets. The disordered interligand interactions on the confined surfaces of nanosheets enable the formation of discrete amplified chiral domains around the adsorbed chiral analytes, resulting in a linearly amplified chiral transfer behavior, which provides a solution for highly sensitive and wide-range quantification of enantiomer compositions. Taking (1R, 2R)-(-)- and (1S, 2S)-(+)-1,2-diamino cyclohexanes as example analytes, the concentration and full-range enantiomeric excess (ee) values have been quickly determined by adsorbing them on the surface of Au(I)-MPA (MPA: 3-mercaptopropionic acid) nanosheets in the concentration range of 1.0 × 10-6 to 4.0 × 10-5 M. By engineering the surface functional groups, Au(I)-thiolate nanosheets can be extended to sense other types of analytes, and several polyols with multiple chiral centers have been sensed by boronic acid functionalized nanosheets at the 10-7 M level. The high performances, good extendibility, and one-pot high-yield aqueous synthesis ensure these Au(I)-thiolate nanosheets can be developed as a practical and powerful chiral sensing platform.

13.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885590

ABSTRACT

Bulk diamonds show great potential for optical applications such as for use in infrared (IR) windows and temperature sensors. The development of optical-grade bulk diamond synthesis techniques has facilitated its extreme applications. Here, two kinds of bulk single-crystal diamonds, a high-pressure and high-temperature (HPHT) diamond and a chemical vapor deposition (CVD) diamond, were evaluated by Raman spectroscopy and Fourier Transform Infra-Red (FTIR) spectroscopy at a range of temperatures from 80 to 1200 K. The results showed that there was no obvious difference between the HPHT diamond and the CVD diamond in terms of XRD and Raman spectroscopy at 300-1200 K. The measured nitrogen content was ~270 and ~0.89 ppm for the HPHT diamond and the CVD diamond, respectively. The moderate nitrogen impurities did not significantly affect the temperature dependence of Raman spectra for temperature-sensing applications. However, the nitrogen impurities greatly influence FTIR spectroscopy and optical transmittance. The CVD diamond showed higher transmittance, up to 71% with only a ~6% drop at temperatures as high as 873 K. This study shows that CVD bulk diamonds can be used for IR windows under harsh environments.

14.
Int J Gen Med ; 14: 5749-5758, 2021.
Article in English | MEDLINE | ID: mdl-34552350

ABSTRACT

BACKGROUND: In-stent restenosis (ISR) chronic total occlusion (CTO) represents a challenging subgroup for revascularization of CTO by percutaneous coronary intervention (PCI). There are limited data on the treatment and outcomes of PCI for ISR CTO. OBJECTIVE: We aimed to evaluate the procedural results and 2-year outcomes of PCI for ISR CTO compared with de novo CTO. METHODS: Patients undergoing attempted CTO PCI between January 2017 and December 2019 were prospectively enrolled. We analyzed the procedural results and 2-year major adverse cardiac events (MACE) in patients undergoing ISR CTO and those undergoing de novo CTO PCI. RESULTS: A total of 426 patients undergoing 484 consecutive CTO PCI (ISR CTO PCI, n=84; de novo CTO, n=400) were enrolled during the study period. Patients undergoing de novo CTO PCI had a significantly greater syntax score than those undergoing ISR CTO PCI [23.0 (17.5, 30.5) vs 21.5 (14.5, 27.0), p=0.039]. Technical (73.8% vs 79.0%, p=0.296) and procedural (73.8% vs 78.0, p=0.405) success rates, as well as the incidence of major procedural complications (1.2% vs 2.3%, p=0.842), were comparable between the two groups. After a median follow-up of 20 months, patients who underwent ISR CTO PCI had a significantly higher incidence of MACE (33.3% vs 10.3%, p<0.001), mainly attributed to the higher TVR rates (24.7% vs 7.6%, p<0.001). ISR CTO was the only independent predictor of MACE (hazard ratio, 4.124; 95% confidence interval, 1.951-8.717; p<0.001) during follow-up in patients who underwent CTO PCI. CONCLUSION: ISR CTO PCI shows comparable technical and procedural success, as well as major procedural complications compared with de novo CTO PCI. However, patients who underwent ISR CTO PCI had a significantly worse prognosis than those who underwent de novo CTO PCI, in terms of MACE, driven by TVR. ISR CTO was the only independent predictor of MACE during the follow-up.

15.
Adv Sci (Weinh) ; 8(19): e2101426, 2021 10.
Article in English | MEDLINE | ID: mdl-34351703

ABSTRACT

DNA modifications, represented by 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), play important roles in epigenetic regulation of biological processes. The specific recognition of DNA modifications by the transcriptional protein machinery is thought to be a potential mechanism for epigenetic-driven gene regulation, and many modified DNA-specific binding proteins have been uncovered. However, the panoramic view of the roles of DNA modification readers at the proteome level remains largely unclear. Here, a recently developed concatenated tandem array of consensus transcription factor (TF) response elements (catTFREs) approach is employed to profile the binding activity of TFs at DNA modifications. Modified DNA-binding activity is quantified for 1039 TFs, representing 70% of the TFs in the human genome. Additionally, the modified DNA-binding activity of 600 TFs is monitored during the mouse brain development from the embryo to the adult stages. Readers of these DNA modifications are predicted, and the hierarchical networks between the transcriptional protein machinery and modified DNA are described. It is further demonstrated that ZNF24 and ZSCAN21 are potential readers of 5fC-modified DNA. This study provides a landscape of TF-DNA modification interactions that can be used to elucidate the epigenetic-related transcriptional regulation mechanisms under physiological conditions.


Subject(s)
5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Cytosine/analogs & derivatives , DNA/metabolism , Gene Expression Profiling/methods , Proteome/metabolism , Animals , Cytosine/metabolism , DNA/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/genetics , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Transcription Factors/metabolism
16.
BMC Cardiovasc Disord ; 21(1): 399, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34407770

ABSTRACT

OBJECTIVES: To evaluate the safety and efficacy of excimer laser coronary atherectomy (ELCA) in patients with in-stent restenosis chronic total occlusions (ISR CTOs). BACKGROUND: ISR CTOs are a challenge in percutaneous coronary intervention (PCI). Although they can be treated by ELCA, limited data are available on the effects of ELCA treatment in these patients. METHODS: Fifty-nine consecutive patients underwent PCI for ISR CTOs at Beijing Hospital between December 2017 and September 2020. According to whether or not ELCA was performed, they were divided into two groups. Quantitative coronary angiography (QCA) analyses were performed routinely, including measurement of the minimal lumen diameter and calculation of the percentage diameter stenosis. The procedural success rate, the frequency of peri-procedural complications, and the incidence rates of major adverse cardiac events (MACEs) over nine months were assessed. The primary endpoint in the study was the percentage diameter stenosis. RESULTS: Procedure success was achieved in most patients in both groups (75.9%). Patients in the ELCA group exhibited a lower percentage diameter stenosis (24.5 ± 9.09 vs. 35.1 ± 18.6, p = 0.048) and a larger minimal lumen diameter (2.36 ± 0.29 mm vs. 1.78 ± 0.64 mm, p < 0.001) than those in the control group and the 9-month incidence rates of MACEs did not differ (9.5% vs 15.8%, p = 0.699). CONCLUSIONS: This study demonstrated that ELCA may be a safe and effective technique in the treatment of ISR CTOs, and the use of ELCA can achieve good immediate angiographic results, as measured by QCA, without increasing peri-procedural complications or the incidence rates of 9-month MACEs.


Subject(s)
Atherectomy, Coronary/instrumentation , Coronary Occlusion/therapy , Coronary Restenosis/therapy , Lasers, Excimer/therapeutic use , Percutaneous Coronary Intervention/adverse effects , Aged , Atherectomy, Coronary/adverse effects , Beijing , Chronic Disease , Coronary Angiography , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/etiology , Coronary Restenosis/diagnostic imaging , Coronary Restenosis/etiology , Female , Humans , Lasers, Excimer/adverse effects , Male , Middle Aged , Percutaneous Coronary Intervention/instrumentation , Retrospective Studies , Stents , Time Factors , Treatment Outcome , Ultrasonography, Interventional
18.
Front Cardiovasc Med ; 8: 654392, 2021.
Article in English | MEDLINE | ID: mdl-33969017

ABSTRACT

Background: Coronary angiography-derived fractional flow reserve (caFFR) measurements have shown good correlations and agreement with invasive wire-based fractional flow reserve (FFR) measurements. However, few studies have examined the diagnostic performance of caFFR measurements before and after percutaneous coronary intervention (PCI). This study sought to compare the diagnostic performance of caFFR measurements against wire-based FFR measurements in patients before and after PCI. Methods: Patients who underwent FFR-guided PCI were eligible for the acquisition of caFFR measurements. Offline caFFR measurements were performed by blinded hospital operators in a core laboratory. The primary endpoint was the vessel-oriented composite endpoint (VOCE), defined as a composite of vessel-related cardiovascular death, vessel-related myocardial infarction, and target vessel revascularization. Results: A total of 105 pre-PCI caFFR measurements and 65 post-PCI caFFR measurements were compared against available wire-based FFR measurements. A strong linear correlation was found between wire-based FFR and caFFR measurements (r = 0.77; p < 0.001) before PCI, and caFFR measurements also showed a high correlation (r = 0.82; p < 0.001) with wire-based FFR measurements after PCI. A total of 6 VOCEs were observed in 61 patients during follow-up. Post-PCI FFR values (≤0.82) in the target vessel was the strongest predictor of VOCE [hazard ratio (HR): 5.59; 95% confidence interval (CI): 1.12-27.96; p = 0.036). Similarly, patients with low post-PCI caFFR values (≤0.83) showed an 8-fold higher risk of VOCE than those with high post-PCI caFFR values (>0.83; HR: 8.83; 95% CI: 1.46-53.44; p = 0.017). Conclusion: The study showed that the caFFR measurements were well-correlated and in agreement with invasive wire-based FFR measurements before and after PCI. Similar to wire-based FFR measurements, post-PCI caFFR measurements can be used to identify patients with a higher risk for adverse events associated with PCI.

19.
Angew Chem Int Ed Engl ; 60(4): 2018-2023, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-32885573

ABSTRACT

A new and simple strategy towards electric-field-driven multiple chirality switching device has been designed and fabricated by combining a newly synthesized base-responsive chiroptical polymer switch (R-FLMA) and p-benzoquinone (p-BQ) via proton-coupled electron transfer (PCET) mechanism. Clear and stable triple chirality states (silence, positive, negative) of this device in visible band can be regulated reversibly (>1000 cycles) by adjusting voltage programs. Furthermore, such chiral switching phenomena are also accompanied by apparent changes of color and fluorescence. More importantly, the potential application of this device for a spatial light modulator has also been demonstrated.

20.
Chem Soc Rev ; 49(23): 8687-8720, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33078186

ABSTRACT

Electrochromic devices (ECDs) have been regarded as promising candidates for energy-saving smart windows, next-generation displays and wearable electronics due to their significant benefits of simple and adjustable structures, low power consumption, flexible and stretchable features, and eye-friendly modes for displays. However, there are many existing issues waiting to be solved such as durability, reversibility and inadequate switching performances. These insurmountable technical bottlenecks significantly slow down the commercialization of next-generation ECDs. Nanomaterials with superior active reaction surface area have played indispensable roles in optimizing heterogeneous electron transfer and homogeneous ion transfer for ECDs and other optoelectronic devices. In recent years, with the joint efforts of various outstanding research teams, new kinds and methods for nanomaterials to fabricate ECDs with excellent performances have been rapidly developing. This review highlights the latest exciting results regarding the design and application of new and unique nanomaterials for each layer of ECDs. Meanwhile, the structures, mechanisms, features and preparation of the reported nanomaterials to improve the electrochromic properties have been discussed in detail. In addition, the remaining challenges and corresponding strategies of this field are also proposed. Hopefully, this review can inspire more and more researchers to enrich the nanomaterials for ECDs and other related fields to overcome faced technical barriers by innovative means and promote industrialization of ECDs and other optoelectronic technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...