Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Inorg Chem ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353084

ABSTRACT

Due to the slow kinetic nature of the oxygen evolution reaction (OER), the development of electrocatalysts with high efficiency, stability, and economy for oxygen production using metal-organic framework (MOF) materials is still a challenging research topic. In this work, we chose the different concentrations of FeS adsorption to encapsulate metal cobalt-based ZIF-67 MOF for preparing a series of electrocatalysts (ZIF1FeSx, x = 0.2, 0.5, 0.75, and 1), which were mainly explored for the electrocatalytic OER. Among them, ZIF1FeS0.5 has excellent electrocatalytic activity for OER, which can be driven by low overpotentials of 276 and 349 mV at 10 and 50 mA cm-2 current densities, and more than 92% of the initial overpotential can be maintained after 100 h of continuous OER at 10 mA cm-2 current density. This is mainly due to the electronic interactions between the cobalt-based MOF and the FeS, which shift the electronic state of the active metal center to a higher valence state for increasing the number of active sites and enhancing the efficiency of electron transfer to facilitate the OER course. This work may contribute to the design of effective catalysts for the OER during the electrolysis of alkaline solutions.

2.
Inorg Chem ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350542

ABSTRACT

A cerium(III)-containing silicotungstate, [H2N(CH3)2]10NaK[KCe(SiW11O39)2(H2O)]·18.5H2O (CeSiW), was successfully synthesized and characterized. Structure analysis reveals that CeSiW is composed of two {SiW11O39} units connected by one cerium(III) cation to form a typical 1:2 sandwich structure, which is further expanding into a 1D chain linked by K+ ions. The oxygen-enriched surfaces of {SiW11O39} units and open cerium sites provide abundant Lewis base and acid sites in CeSiW. As a result, CeSiW efficiently catalyzed the C3-alkenylation of oxindoles with aldehydes through the simultaneous activation of both reaction substrates on its crystal framework. Various 3-benzylidene-oxindoles are synthesized with excellent yields and high E-selectivity under solvent-free conditions.

3.
BioDrugs ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317850

ABSTRACT

BACKGROUND: Nivolumab (Opdivo®) is the first anti-PD-1 antibody approved in the world. LY01015 is a potential biosimilar of nivolumab. OBJECTIVES: This phase I study aimed to establish the pharmacokinetic equivalence between LY01015 and the original investigational nivolumab (Opdivo®) in healthy Chinese male subjects. Additionally, safety and immunogenicity were assessed. PATIENTS AND METHODS: A randomized, double-blind, parallel-controlled, phase I trial was conducted with 176 healthy male adults receiving a single intravenous infusion of LY01015 or nivolumab at 0.3 mg/kg. Pharmacokinetics, safety, and immunogenicity were evaluated over a 99-day period. The primary pharmacokinetics endpoint was AUC0-∞, and the secondary pharmacokinetic endpoints included AUC0-t and Cmax. Pharmacokinetic bioequivalence was confirmed using standard equivalence margins of 80.00-125.00%. RESULTS: This study is the first to report on the pharmacokinetics, safety, and immunogenicity of Opdivo® in healthy individuals. The pharmacokinetics profiles of LY01015 and Opdivo® were found to be comparable. The geometric mean ratios (90% confidence intervals) for the AUC0-∞, AUC0-t, and Cmax of LY01015 to Opdivo® were 94.49% (90.29-98.88%), 94.92% (88.73-101.54%), and 96.55% (93.32-99.90%), respectively, falling within the conventional bioequivalence criteria of 80.00-125.00%. The safety and immunogenicity were also comparable between the two groups. CONCLUSIONS: LY01015 demonstrated highly similar pharmacokinetics to nivolumab in healthy Chinese male subjects. Both drugs exhibited comparable safety and immunogenicity profiles. TRIAL REGISTRATION: This trial is registered at the Chinese Clinical Trial Registry website ( https://www.chictr.org.cn/ #ChiCTR2200064771).

4.
Inorg Chem ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324751

ABSTRACT

A unique meso Ce(III)-containing antimonotungstate, {Na(OAc)(H2O)2[Ce4(tar)(Htar)2(Sb2W21O72)2(H2O)7]}244- (Ce4tar3; H4tar = tartaric acid), consisting of two enantiomeric parts with a butterfly-like configuration, was successfully synthesized by a one-pot in situ method and characterized. The coordination of d- or l-tar ligands induced the formation of Dawson-like {Ce2Sb2W21} with right or left configurations, thereby determining the d/l configurations of {Na(OAc)(H2O)2[Ce4(tar)(Htar)2(Sb2W21O72)2(H2O)7]}22-. Carboxyl groups link these two enantiomeric parts with Ce(III) ions from each other around the symmetric center of the P1̅ space group. The three types of tar ligands exhibit distinct coordination modes, and all coordinate with at least one W(VI) atom using one carboxylate oxygen atom and one α-OH. Ce4tar3 represents the largest case among those meso-dl-tar-functionalized polyoxometalates. Furthermore, Ce4tar3 exhibits excellent catalytic activity for synthesizing isoindolinones via the three-component reaction of 2-acetylbenzoic acids, amines, and phosphine oxides.

5.
Prev Med Rep ; 46: 102852, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39238781

ABSTRACT

Background: A high body mass index (BMI) increases the risk of hypertension. However, little is known about the dose-dependent association between BMI and hypertension. Therefore, this study investigated the prevalence of hypertension in 7568 subjects from the Jiangsu Province, Eastern China, and analyzed the dose-response relationship between BMI and hypertension risk. Methods: The eligible subjects completed a structured questionnaire and clinical biochemical indicators were measured according to standardized protocols. Multivariate logistic regression models were used to evaluate the association between BMI and hypertension. Restricted cubic spline (RCS) analysis was used to analyze the dose-response relationship between BMI and hypertension risk. Moreover, sensitivity analysis was performed to verify the robustness of our findings. Results: The prevalence of hypertension was 35.3 % in the total population. BMI was significantly associated with systolic and diastolic blood pressure. The fully-adjusted odds ratio (OR) with 95 % confidence interval (CI) for hypertension was 1.17 (1.15, 1.19) for every 1 kg/m2 increase in BMI. Furthermore, the OR (95 % CI) for hypertension in the highest BMI group (Obesity) was 4.14 (3.45, 4.96) after adjusting for covariates compared with the normal group. Multivariable adjusted RCS analysis showed a positive and linear dose-response relationship between BMI and hypertension risk both in male and female populations (all P for non-linearity > 0.05). Conclusion: Our study demonstrated a positive and linear dose-response relationship between BMI and the risk of hypertension. The results of this study provide evidence for BMI-related clinical interventions to reduce the risk of hypertension.

6.
Chem Sci ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39263658

ABSTRACT

Understanding the atomic structures and dynamic evolution of uranium oxides is crucial for the reliable operation of fission reactors. Among them, U4O9-as an important intermediate in the oxidation of UO2 to UO2+x -plays an important role in the nucleation and conversion of uranium oxides. Herein, we realize the confined assembly of uranyl within SWCNTs in liquid phase and reveal the directional growth and reconstruction of U4O9 nanorods in nanochannels, enabled by in situ scanning transmission electron microscopy (STEM) e-beam stimulation. The nucleation and crystallization of U4O9 nanorods in nanochannels obey the "non-classical nucleation" mechanism and exhibit remarkably higher growth rate compared to those grown outside. The rapid growth process is found to be accompanied by the formation and elimination of U atom vacancies and strain, aiming to achieve the minimum interfacial energy. Eventually, the segments of U4O9 nanorods in SWCNTs merge into single-crystal U4O9 nanorods via structural reconstruction at the interfaces, and 79% of them exhibit anisotropic growth along the specific 〈11̄0〉 direction. These findings pave the way for tailoring the atomic structures and interfaces of uranium oxides during the synthesis process to help improve the mechanical properties and stability of fission reactors.

7.
Chem Commun (Camb) ; 60(78): 10934-10937, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39258442

ABSTRACT

Two novel rare earth-substituted tungstoantimonates [H2N(CH3)2]8Na12[Dy2(H2O)6(tar)(Sb2W21O72)]2·40H2O (DySbW) and [H2N(CH3)2]6Na14[Ho2(H2O)6(tar)(Sb2W21O72)]2·25H2O (HoSbW) (H4tar = tartaric acid) were synthesized. The meso-polyanions are alternately linked by {Na3(H2O)3} clusters and DL-tar ligands to form 1D chains. Notably, HoSbW exhibits excellent catalytic activity and high stability for the synthesis of isoindolinones using EtOH as a green solvent.

8.
Lung ; 202(5): 673-681, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191908

ABSTRACT

BACKGROUND: Inhaled corticosteroids (ICS) are effective in managing asthma and chronic obstructive pulmonary disease (COPD) but increase the risk of pneumonia. Benzodiazepines (BZD), commonly prescribed for comorbid psychiatric disorders in asthma or COPD patients, are also associated with pneumonia. This study investigates the risk of pneumonia associated with the concomitant use of ICS and BZD. METHODS: Data from the FDA Adverse Event Reporting System from Q4 2013 to Q3 2023 were extracted. Reports involving asthma or COPD patients were included. Disproportionality analysis and logistic regression analysis were performed to assess the risk of pneumonia associated with the combined use of ICS and BZD. Additive and multiplicative models were used to further confirm the results. Additionally, subgroup analyses were conducted based on gender, age, and disease type. RESULTS: A total of 238,411 reports were included. The combined use of ICS and BZD was associated with a higher reporting of pneumonia (ROR: 2.41, 95% CI 2.25-2.58). Using additive and multiplicative methods, the results remained significant. The strongest risk signals were observed in specific drug combinations, such as mometasone with clonazepam, budesonide with temazepam, and mometasone with zopiclone. Subgroup analyses showed higher pneumonia risks in females, patients over 60 years old, and those with asthma. CONCLUSION: Our findings identified a significantly elevated pneumonia risk with the combined use of ICS and BZD. These results highlighted the necessity for cautious co-prescription of ICS and BZD and suggested the need for more comprehensive clinical studies to assess this interaction.


Subject(s)
Adrenal Cortex Hormones , Adverse Drug Reaction Reporting Systems , Asthma , Benzodiazepines , Pharmacovigilance , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Male , Female , Administration, Inhalation , Benzodiazepines/adverse effects , Benzodiazepines/administration & dosage , Middle Aged , Pneumonia/epidemiology , Pneumonia/chemically induced , Asthma/drug therapy , Asthma/epidemiology , Aged , Adult , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , United States/epidemiology , Young Adult , Adolescent , Risk Factors , Risk Assessment , Child , Drug Therapy, Combination , Aged, 80 and over , Clonazepam/adverse effects , Clonazepam/administration & dosage
9.
Article in English | MEDLINE | ID: mdl-39159613

ABSTRACT

INTRODUCTION: Skin blanching assay has been established as a surrogate method for assessing bioequivalence of topical corticosteroids. This study aimed to apply the skin blanching assay to evaluate the bioequivalence of a test desonide cream (T) compared with the reference Desonide® (R) using Chinese skins. Additionally, the pharmacokinetics and safety profiles were also assessed. METHODS: By detecting the degree of skin blanching under different dose duration in a pilot dose-duration-response study, the area under the observed effect-time curve (AUEC) and half of the maximum effect (ED50) was calculated. Based on this, the skin color of different time points after a dose duration of ED50, D1 (0.5×ED50) and D2 (2×ED50) were detected as a pharmacodynamic indicator to compare between test and reference creams. A single-center, single-dose, randomized, open-label, two-cycle crossover pharmacokinetic studies were designed to make sure the exposure of tested formulations was not higher than that of the reference formulations. Subjects experiencing adverse events (AEs) were monitored and utilized for safety analysis. RESULTS: These studies involved twelve subjects for the dose-duration-response study, 100 subjects for the bioequivalence study, and twelve subjects for pharmacokinetic study. The results showed that the population ED50 was 0.88±0.45 h, the mean ratio of area under effective curve (AUEC0-24h) of test and reference preparations was 0.95, with a 90% confidence interval as 88.09%-101.72%, indicating the bioequivalence of the test formulation and Desonide®. The maximum concentration (Cmax) and exposure (AUC0-t) of T and R were 20.8 ± 11.5 pg/mL versus 19.7 ± 10.1 pg/mL, respectively, and 451.04 ± 363.65 pg∙h/mL versus 541.47 ± 581.41 pg∙h/mL, respectively. The systemic exposure of a single dose of the test cream was not higher than that of the reference preparation. All of the volunteers experienced grade 1 adverse events (AEs), suggesting that single administration of the test desonide cream is well tolerated in the Chinese healthy population. CONCLUSIONS: This study demonstrated the applicability of skin blanching assay in Chinese skins and established the bioequivalence of test and reference desonide creams.

10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(7): 660-665, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39179411

ABSTRACT

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) infection and poses a serious threat to human health. Natural killer (NK) cells, an important component of innate immunity, can differentiate into various subpopulations in response to MTB infection, showing a diversity of receptors and functions. They engage in crosstalk with other immune cells by secreting cytokines, thereby exerting anti-infective actions against MTB infection and enhancing the body's immune response to the infection.


Subject(s)
Killer Cells, Natural , Mycobacterium tuberculosis , Tuberculosis , Killer Cells, Natural/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Immunity, Innate
11.
Nucleic Acids Res ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180399

ABSTRACT

Drug interactions pose significant challenges in clinical practice, potentially leading to adverse drug reactions, reduced efficacy, and even life-threatening consequences. As polypharmacy becomes increasingly common, the risk of harmful drug interactions rises, underscoring the need for comprehensive and user-friendly drug interaction resources to ensure patient safety. To address these concerns and support healthcare professionals in optimizing drug therapy, we present DDInter 2.0, a significantly expanded and enhanced update to our drug interaction database. This new version incorporates additional interaction types, including drug-food interactions (DFIs), drug-disease interactions (DDSIs), and therapeutic duplications, providing a more complete resource for clinical decision-making. The updated database covers 2310 drugs, with 302 516 drug-drug interaction (DDI) records accompanied by 8398 distinct, high-quality mechanism descriptions and management recommendations. DDInter 2.0 also includes 857 DFIs, 8359 DDSIs and 6033 therapeutic duplication records, each supplemented with detailed information and guidance. Furthermore, the enhanced user interface and advanced filtering options in this second release facilitate easy access to and analysis of the comprehensive drug interaction data. By providing healthcare professionals and researchers with a more complete and user-friendly resource, DDInter 2.0 aims to support clinical decision-making and ultimately improve patient outcomes. DDInter 2.0 is freely accessible at https://ddinter2.scbdd.com.

12.
Inorg Chem ; 63(26): 12240-12247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946338

ABSTRACT

An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.

13.
Drug Des Devel Ther ; 18: 2729-2743, 2024.
Article in English | MEDLINE | ID: mdl-38974123

ABSTRACT

Background: Oliceridine is a novel G protein-biased ligand µ-opioid receptor agonist. This study aimed to assess the pharmacokinetics and safety profile of single-ascending doses of oliceridine fumarate injection in Chinese patients with chronic non-cancer pain. Methods: Conducted as a single-center, open-label trial, this study administered single doses of 0.75, 1.5, and 3.0 mg to 32 adult participants. The trial was conducted in two parts. First, we conducted a preliminary test comprising the administration of a single dose of 0.75mg to 2 participants. Then, we conducted the main trial involving intravenous administration of escalating doses of oliceridine fumarate (0.75 to 3 mg) to 30 participants. Pharmacokinetic (PK) parameters were derived using non-compartmental analysis. Additionally, the safety evaluation encompassed the monitoring of adverse events (AEs). Results: 32 participants were included in the PK and safety analyses. Following a 2-min intravenous infusion of oliceridine fumarate injection (0.75, 1.5, or 3 mg), Cmax and Tmax ranged from 51.293 to 81.914 ng/mL and 0.034 to 0.083 h, respectively. AUC0-t and half-life (t1/2) increased more than proportionally with dosage (1.85-2.084 h). Treatment emergent adverse events (TEAEs) were found to be consistent with the commonly reported adverse effects of opioids, both post-administration and as documented in the original trials conducted in the United States. Critically, no serious adverse events were observed. Conclusion: Oliceridine demonstrated comparable PK parameters and a consistent PK profile in the Chinese population, in line with the PK results observed in the original trials conducted in the United States. Oliceridine was safe and well tolerated in Chinese patients with chronic non-cancer pain at doses ranging from 0.75 mg to 3.0 mg. Trial Registration: The trial is registered at chictr.org.cn (ChiCTR2100047180).


Subject(s)
Chronic Pain , Dose-Response Relationship, Drug , Spiro Compounds , Thiophenes , Adult , Female , Humans , Male , Middle Aged , Young Adult , China , Chronic Pain/drug therapy , East Asian People , Spiro Compounds/pharmacokinetics , Thiophenes/pharmacokinetics
14.
Inorg Chem ; 63(32): 15134-15143, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39074382

ABSTRACT

Gossypol (Gsp) and antibiotics present in water bodies become organic pollutants that are harmful to human health and the ecological environment. Accurate and effective detection of these pollutants has far-reaching significance in many fields. A new three-dimensional metal-organic framework (MOF), {[Eu3(L)2(HCOO-)(H2O)3]·2H2O·2DMF}n (Eu-MOF), was synthesized from 3,5-bis(2,4-dicarboxylphenyl)nitrobenzene (H4L) ligand and Eu3+ via the solvothermal method in this paper. The Eu-MOF demonstrates strong red fluorescence and can remain stable in different pH solutions. The MOF fluorescence probe could detect organic pollutants through the "shut-off" effect, with a fast response speed and a low detection limit [Gsp, nitrofurantoin (NFT), and nitrofurazone (NFZ) for 0.43, 0.38, and 0.41 µM, respectively]. During the testing process, Eu-MOF exhibited good selectivity and recoverability. Furthermore, the mechanism of fluorescence quenching was investigated, and the recoveries were also good in real samples. This paper introduced a deep learning model to recognize the fluorescence images, a portable intelligent logic detector designed for real-time detection of Gsp by logic gate strategy, and an anticounterfeiting mark prepared based on inkjet printing. Importantly, this work provides a new way of thinking for the detection of organic pollutants in water with high sensitivity and practicality by combining the fluorescence probe with machine learning and logical judgment.


Subject(s)
Anti-Bacterial Agents , Europium , Fluorescent Dyes , Gossypol , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Europium/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Gossypol/analysis , Gossypol/chemistry , Water Pollutants, Chemical/analysis , Nitrofurans/analysis , Spectrometry, Fluorescence , Molecular Structure , Limit of Detection
15.
AAPS J ; 26(4): 82, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997548

ABSTRACT

Currently, Biopharmaceutics Classification System (BCS) classes I and III are the only biological exemptions of immediate-release solid oral dosage forms eligible for regulatory approval. However, through virtual bioequivalence (VBE) studies, BCS class II drugs may qualify for biological exemptions if reliable and validated modeling is used. Here, we sought to establish physiologically based pharmacokinetic (PBPK) models, in vitro-in vivo relationship (IVIVR), and VBE models for enteric-coated omeprazole capsules, to establish a clinically-relevant dissolution specification (CRDS) for screening BE and non-BE batches, and to ultimately develop evaluation criteria for generic omeprazole enteric-coated capsules. To establish omeprazole's IVIVR based on the PBPK model, we explored its in vitro dissolution conditions and then combined in vitro dissolution profile studies with in vivo clinical trials. The predicted omeprazole pharmacokinetics (PK) profiles and parameters closely matched the observed PK data. Based on the VBE results, the bioequivalence study of omeprazole enteric-coated capsules required at least 48 healthy Chinese subjects. Based on the CRDS, the capsules' in vitro dissolution should not be < 28%-54%, < 52%, or < 80% after two, three, and six hours, respectively. Failure to meet these dissolution criteria may result in non-bioequivalence. Here, PBPK modeling and IVIVR methods were used to bridge the in vitro dissolution of the drug with in vivo PK to establish the BE safety space of omeprazole enteric-coated capsules. The strategy used in this study can be applied in BE studies of other BCS II generics to obtain biological exemptions and accelerate drug development.


Subject(s)
Capsules , Drug Liberation , Models, Biological , Omeprazole , Therapeutic Equivalency , Omeprazole/pharmacokinetics , Omeprazole/administration & dosage , Omeprazole/chemistry , Humans , Male , Adult , Solubility , Young Adult , Administration, Oral , Proton Pump Inhibitors/pharmacokinetics , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/chemistry , Female , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Drugs, Generic/standards , Drugs, Generic/chemistry , Cross-Over Studies
16.
Nanoscale ; 16(30): 14310-14318, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39012341

ABSTRACT

Designing antibacterial agents with rapid bacterial eradication performance is paramount for the treatment of bacteria-infected wounds. Metal nanoclusters (NCs) with aggregation-induced emission (AIE) have been considered as novel photodynamic antibacterial agents without drug resistance, but they suffer from poor photostability and low charge carrier separation efficiency. Herein, we report the design of a photodynamic antibacterial agent by encapsulating AIE-type AgAu NCs (Ag28Au1 NCs) into a zeolitic Zn(2-methylimidazole)2 framework (ZIF-8). The encapsulation of AIE-type Ag28Au1 NCs into porous ZIF-8 could not only enhance the photostability of Ag28Au1 NCs by inhibiting their aggregation but also promote the separation of photoinduced charge carriers, resulting in the rapid generation of destructive reactive oxygen species (ROS) for bacterial killing under visible-light irradiation. Consequently, the as-designed photodynamic Ag28Au1 NCs@ZIF-8 antibacterial agent could rapidly eliminate 97.7% of Escherichia coli (E. coli) and 91.6% of Staphylococcus aureus (S. aureus) within 5 min in vitro under visible light irradiation. Furthermore, in vivo experimental results have highlighted the synergistic effect created by AIE-type Ag28Au1 NCs and ZIF-8, enabling Ag28Au1 NCs@ZIF-8 to effectively eradicate bacteria in infected areas, reduce inflammation, and promote the generation of blood vessels, epithelial tissue, and collagen. This synergistic effect promoted the healing of S. aureus-infected wound, with nearly 100% of wound recovery within 11 days. This work may be interesting because it sheds light on the design of metal NC-based photodynamic nanomedicine for bacteria-infected disease treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Imidazoles , Metal-Organic Frameworks , Photochemotherapy , Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Staphylococcus aureus/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Imidazoles/chemistry , Imidazoles/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Silver/chemistry , Silver/pharmacology , Reactive Oxygen Species/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Light
17.
J Environ Manage ; 365: 121613, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944964

ABSTRACT

Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.


Subject(s)
Carbon , Composting , Sewage , Triticum , Sewage/microbiology , Carbon/metabolism , Humic Substances , Charcoal
18.
Database (Oxford) ; 20242024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943608

ABSTRACT

Drug transporters, integral membrane proteins found throughout the human body, play critical roles in physiological and biochemical processes through interactions with ligands, such as substrates and inhibitors. The extensive and disparate data on drug transporters complicate understanding their complex relationships with ligands. To address this challenge, it is essential to gather and summarize information on drug transporters, inhibitors and substrates, and simultaneously develop a comprehensive and user-friendly database. Current online resources often provide fragmented information and have limited coverage of drug transporter substrates and inhibitors, highlighting the need for a specialized, comprehensive and openly accessible database. ISTransbase addresses this gap by amassing a substantial amount of data from literature, government documents and open databases. It includes 16 528 inhibitors and 4465 substrates of 163 drug transporters from 18 different species, resulting in a total of 93 841 inhibitor records and 51 053 substrate records. ISTransbase provides detailed insights into drug transporters and their inhibitors/substrates, encompassing transporter and molecule structure, transporter function and distribution, as well as experimental methods and results from transport or inhibition experiments. Furthermore, ISTransbase offers three search strategies that allow users to retrieve drugs and transporters based on multiple selectable constraints, as well as perform checks for drug-drug interactions. Users can also browse and download data. In summary, ISTransbase (https://istransbase.scbdd.com/) serves as a valuable resource for accurately and efficiently accessing information on drug transporter inhibitors and substrates, aiding researchers in exploring drug transporter mechanisms and assisting clinicians in mitigating adverse drug reactions Database URL: https://istransbase.scbdd.com/.


Subject(s)
Membrane Transport Proteins , Humans , Membrane Transport Proteins/metabolism , Internet , Databases, Protein , Databases, Factual , Animals , Databases, Pharmaceutical
19.
Blood Sci ; 6(3): e00193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38832105

ABSTRACT

Despite recent progress in multiple myeloma (MM) treatments, most patients will relapse and require additional treatment. Intravenous daratumumab, a human IgGκ monoclonal antibody targeting CD38, has shown good efficacy in the treatment of MM. A subcutaneous version of daratumumab was formulated to reduce the burden of intravenous infusions. We aimed to investigate the efficacy and safety of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM based on the demonstrated noninferiority of subcutaneous daratumumab to intravenous daratumumab, with a shorter administration time and reduced infusion-related reaction rate in global studies. This phase 1, multicenter study (MMY1010; ClinicalTrials.gov Identifier: NCT04121260) evaluated subcutaneous daratumumab in Chinese patients with relapsed/refractory MM after 1 prior line (n = 1) or ≥2 prior lines (n = 20) of therapy, including a proteasome inhibitor and an immunomodulatory drug. Primary endpoints were pharmacokinetics and safety. Mean (standard deviation) maximum trough concentration of daratumumab was 826 (335) µg/mL, which was consistent with prior studies of subcutaneous daratumumab and intravenous daratumumab. Safety was consistent with safety profiles observed in other daratumumab studies, with no new safety concerns identified. Incidences of infusion-related reactions and injection-site reactions were low and consistent with other subcutaneous daratumumab studies. At a median follow-up of 7.5 months, the overall response rate was 57.1%, with a very good partial response or better rate of 38.1% and complete response or better rate of 19.0%. Our results demonstrate a favorable benefit/risk profile of subcutaneous daratumumab in Chinese patients with relapsed/refractory MM, potentially impacting clinical administration of daratumumab in this population.

20.
Front Plant Sci ; 15: 1374142, 2024.
Article in English | MEDLINE | ID: mdl-38828222

ABSTRACT

Salt stress is a well-known abiotic constraint that hampers crop productivity, affecting more than 424 million hectares of topsoil worldwide. Applying plant growth regulators externally has proven effective in enhancing crop resilience to salt stress. Previous metabolomics studies revealed an accumulation of Valine-Threonine-Isoleucine-Aspartic acid (VTID) in salt-stressed maize seedlings, suggesting its potential to assist maize adaptation to salt stress. To explore the effectiveness of VTID in enhancing salt tolerance in maize, 10 nM VTID was applied to salt-stressed maize seedlings. The results showed a remarkable 152.29% increase in plant height and a 122.40% increase in fresh weight compared to salt-stressed seedlings. Moreover, the addition of VTID enhanced the activity of antioxidant enzymes, specifically superoxide dismutase (SOD) and catalase (CAT), while reducing the level of malondialdehyde (MDA), a marker of oxidative stress. Additionally, VTID supplementation resulted in a significant increase in osmoregulatory substances such as proline. Metabolomic analysis revealed substantial changes in the metabolite profile of maize seedlings when treated with VTID during salt stress. Differential metabolites (DMs) analysis revealed that the identified DMs primarily belonged to lipids and lipid-like molecules. The receiver operating characteristic curve and linear regression analysis determined a correlation between isodolichantoside and the height of maize seedlings under salt-stress conditions. In conclusion, these findings validate that VTID effectively regulates tolerance in maize seedlings and offers valuable insights into the potential of short peptides for mitigating salt stress.

SELECTION OF CITATIONS
SEARCH DETAIL