Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13786, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612325

ABSTRACT

To optimize the intensity of X-ray free-electron lasers (XFELs), phase shifters, oriented in phase with the phases of the XFEL pulse and electron beam, are typically installed at undulator lines. Although a π-offset between the phases (i.e., an "out-of-phase" configuration) can suppress the XFEL intensity at resonant frequencies, it can also generate a side-band spectrum, which results in a two-color XFEL pulse; the dynamics of such a pulse can be described using the spontaneous radiation or low gain theory. This attributes of this two-color XFEL pulse can be amplified (log-scale amplification) through an undulator line with out-of-phase phase shifters. In this study, the features of two-color XFEL pulses were evaluated through theory, simulations and experiments performed at Pohang Accelerator Laboratory X-ray Free Electron Laser. The XFEL gain slope and energy separation between the two-color spectral peaks were consistent through theoretical expectation, and the results of simulation and experiment. The experimentally determined two-color XFEL pulse energy was 250 µJ at a photon energy of 12.38 keV with a separation of 60 eV.

2.
J Synchrotron Radiat ; 29(Pt 6): 1465-1479, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36345755

ABSTRACT

A Hanbury Brown and Twiss interferometry experiment based on second-order correlations was performed at the PAL-XFEL facility. The statistical properties of the X-ray radiation were studied within this experiment. Measurements were performed at the NCI beamline at 10 keV photon energy under various operation conditions: self-amplified spontaneous emission (SASE), SASE with a monochromator, and self-seeding regimes at 120 pC, 180 pC and 200 pC electron bunch charge. Statistical analysis showed short average pulse duration from 6 fs to 9 fs depending on the operational conditions. A high spatial degree of coherence of about 70-80% was determined in the spatial domain for the SASE beams with the monochromator and self-seeding regime of operation. The obtained values describe the statistical properties of the beams generated at the PAL-XFEL facility.

3.
J Synchrotron Radiat ; 26(Pt 4): 1101-1109, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274433

ABSTRACT

A wake monochromator based on a large-area diamond single crystal for hard X-ray self-seeding has been successfully installed and commissioned in the hard X-ray free-electron laser (FEL) at the Pohang Accelerator Laboratory with international collaboration. For this commissioning, the self-seeding was demonstrated with a low bunch charge (40 pC) and the nominal bunch charge (180 pC) of self-amplified spontaneous emission (SASE) operation. The FEL pulse lengths were estimated as 7 fs and 29.5 fs, respectively. In both cases, the average spectral brightness increased by more than three times compared with the SASE mode. The self-seeding experiment was demonstrated for the first time using a crystal with a thickness of 30 µm, and a narrow bandwidth of 0.22 eV (full width at half-maximum) was obtained at 8.3 keV, which confirmed the functionality of a crystal with such a small thickness. In the nominal bunch-charge self-seeding experiment, the histogram of the intensity integrated over a 1 eV bandwidth showed a well defined Gaussian profile, which is evidence of the saturated FEL and a minimal electron-energy jitter (∼1.2 × 10-4) effect. The corresponding low photon-energy jitter (∼2.4 × 10-4) of the SASE FEL pulse, which is two times lower than the Pierce parameter, enabled the seeding power to be maximized by maintaining the spectral overlap between SASE FEL gain and the monochromator.

4.
J Synchrotron Radiat ; 26(Pt 4): 1127-1138, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274436

ABSTRACT

PAL-XFEL utilizes a three-chicane bunch compression (3-BC) scheme (the very first of its kind in operation) for free-electron laser (FEL) operation. The addition of a third bunch compressor allows for more effective mitigation of coherent synchrotron radiation during bunch compression and an increased flexibility of system configuration. Start-to-end simulations of the effects of radiofrequency jitter on the electron beam performance show that using the 3-BC scheme leads to better performance compared with the two-chicane bunch compression scheme. Together with the high performance of the linac radiofrequency system, it enables reliable operation of PAL-XFEL with unprecedented stability in terms of arrival timing, pointing and intensity; an arrival timing jitter of better than 15 fs, a transverse position jitter of smaller than 10% of the photon beam size, and an FEL intensity jitter of smaller than 5% are consistently achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...