Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
ACS Omega ; 8(39): 36302-36310, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810707

ABSTRACT

Cannabis is the most prevalent abused substance after alcohol, and its consumption severely harms human health and thus adversely impacts society. The identification and quantification of cannabis in urine play important roles in practical forensics. Excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor (PARAFAC) analysis was developed to identify and quantify the four main ingredients of cannabis in urine samples. The main ingredients of cannabis including Δ-9-tetrahydrocannabinol (THC), cannabidiol, cannabinol, and tetrahydrocannabinolic acid (THC-COOH) exhibited diverse fluorescence characteristics, and the concentrations of these compounds depicted a positive linear relationship with the fluorescence intensity at the ng/mL level. The EEM/PARAFAC method adequately characterized and discriminated the four ingredients in calibration and prediction samples with a low root-mean-square error of prediction (RMSEP; 0.03-0.07 µg/mL) and limit of quantitation (LOQ; 0.26-0.71 µg/mL). The prediction results of the EEM/PARAFAC method well correlated with that of GC-MS with a low RMSEP range (0.01-0.05 µg/mL) and LOQ range (0.07-0.44 µg/mL) in urine samples. The EEM spectroscopic investigation coupled with the PARAFAC algorithm results in an organic, solvent-less, fast, reliable tool to perform accurate and rapid screening of cannabis abusers.

2.
Sci Rep ; 13(1): 14526, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666953

ABSTRACT

Herein, a novel Ag NP substrate doped with Au nanobipyramids was designed and fabricated via a convenient procedure of galvanic reaction for the identification and classification of amphetamine-type stimulants (ATS) in oral fluids in combination with surface enhanced Raman scattering (SERS). The substrate was shown to have a three-dimensional nanostructure, high SERS activity, and good stability. In combination with SERS, the Ag NP substrate doped with Au nanobipyramids was able to detect ultra-low traces of ATS, including amphetamine, methylamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), and 3,4-methylenedioxymethylamphetamine (MDMA) in oral fluid with limit of detection (LOD) and limit of determination quantitation (LOQ) as low as 10-9 mg/mL, which is much better than the current spectroscopic techniques. The equations between concentration and peaks intensity for quantitative analysis displied good doublelogarithmic linear relations and reliability figures of merit at nanogram concentration level in compartion with GC-MS method. The approach can be broadly applied to the ultra-low trace detection of ATS in oral fluid and would be particularly useful for the analyses of nitrogenous organic compounds.


Subject(s)
3,4-Methylenedioxyamphetamine , Central Nervous System Stimulants , Methamphetamine , Amphetamine , Reproducibility of Results , Nitrogen Compounds
3.
J Infect ; 86(1): 47-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36334726

ABSTRACT

Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Epithelium , Toxoplasmosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelium/metabolism , Inflammation , Lung , NF-kappa B/metabolism , Toxoplasma
5.
Sci Rep ; 12(1): 14960, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056112

ABSTRACT

A low-profile broadband circularly polarized (CP) crossed-dipole antenna is proposed. In this antenna, the dipole uses a fractal-based structure with multiple similar patches for obtaining broadband CP radiation and impedance matching. The incorporation of the crossed-dipole antenna with four triangular parasitic patches improves both the impedance and axial ratio (AR) bandwidths. Four parasitic coupled inverted-L metal plates are loaded on the ground plane to significantly enhance the AR bandwidth and reduce the antenna profile. The measured results are in agreement with the simulations, which demonstrates that the proposed antenna has a low profile of 0.18 λ0, a - 10 dB impedance bandwidth of 91% (2.78-7.42 GHz), a 3 dB AR bandwidth of 81.5% (2.99-7.1 GHz), and a good right hand circular polarization (RHCP) radiation pattern with an average gain of 7.9 dBi over the whole operating band.

6.
Behav Brain Res ; 432: 113987, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35780959

ABSTRACT

NLRP3 inflammasome pathway-mediated inflammatory response is closely associated with depression. Increasing attention has been recently paid to the links between autophagy and depression, however, the relationship between autophagy and NLRP3 inflammasome in depressive behavior remain poorly understood. In the present study, the potential roles of autophagy-lysosome pathway in NLRP3 inflammasome regulation were investigated both in vivo (chronic unpredictable mild stress (CUMS)-induced depressive mouse model) and in vitro (LPS-induced cellular model) model. It demonstrated that CUMS induces depressive-like behaviors in mice, accompanied by increased expression of NLRP3 inflammasome and inflammatory responses. Meanwhile, it promoted the autophagosome marker LC3 and autophagic adapter protein p62 accumulation, accompanied by the decrease of lysosomal cathepsins B and D expression in the prefrontal cortex of mice. Notably, a significant colocalization of NLRP3 and LC3 in CUMS mice by immunofluorescence co-staining were observed. For the in vitro study, disrupting the lysosomal function with Baf A1 significantly increased the LPS-induced NLRP3 inflammasome accumulation and pro-inflammatory factors (IL-1ß and IL-18) production in BV2 cells. Collectively, our results suggested that the autophagic process is related to NLRP3 inflammasome activation, and dysfunctional lysosome in autophagy-lysosomal pathway may retard NLRP3 inflammasome degradation, facilitating the production of pro-inflammatory factors, thereby contributing to depressive behavior in CUMS mice.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Autophagy , Inflammasomes/metabolism , Lipopolysaccharides/metabolism , Lysosomes , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prefrontal Cortex/metabolism
7.
Front Pharmacol ; 13: 890284, 2022.
Article in English | MEDLINE | ID: mdl-35784719

ABSTRACT

Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl- secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl- secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl- and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.

8.
Inflammation ; 44(6): 2448-2462, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34657991

ABSTRACT

Accumulating evidence has shown that inflammation, the gut microbiota, and neurotransmitters are closely associated with the pathophysiology of depression. However, the links between the gut microbiota and neurotransmitter metabolism remain poorly understood. The present study aimed to investigate the neuroinflammatory reactions in chronic restraint stress (CRS)-induced depression and to delineate the potential links between the gut microbiota and neurotransmitter metabolism. C57BL/6 mice were subjected to chronic restraint stress for 5 weeks, followed by behavioural tests (the sucrose preference test, forced swim test, open field test, and elevated plus maze) and analysis. The results showed that CRS significantly increased interleukin-1 beta (IL-1ß), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumour necrosis factor α (TNFα) levels and decreased brain-derived neurotrophic factor (BDNF) expression, accompanied by the activation of IkappaB-alpha-phosphorylation-nuclear factor kappa-B (IκBα-p-NF-κB) signalling in the mouse hippocampus. In addition, the neurotransmitter metabolomics results showed that CRS resulted in decreased levels of plasma 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) and their corresponding metabolites, and gut microbiota faecal metabolites with the 16S rRNA gene sequencing indicated that CRS caused marked microbiota dysbiosis in mice, with a significant increase in Helicobacter, Lactobacillus, and Oscillibacter and a decrease in Parabacteroides, Ruminococcus, and Prevotella. Notably, CRS-induced depressive behaviours and the disturbance of neurotransmitter metabolism and microbiota dysbiosis can be substantially restored by dexamethasone (DXMS) administration. Furthermore, a Pearson heatmap focusing on correlations between the microbiota, behaviours, and neurotransmitters showed that Helicobacter, Lactobacillus, and Oscillibacter were positively correlated with depressive behaviours but were negatively correlated with neurotransmitter metabolism, and Parabacteroides and Ruminococcus were negatively correlated with depressive behaviours but were positively correlated with neurotransmitter metabolism. Taken together, the results suggest that inflammation is involved in microbiota dysbiosis and the disturbance of neurotransmitter metabolism in CRS-induced depressive changes, and the delineation of the potential links between the microbiota and neurotransmitter metabolism will provide novel strategies for depression treatment.


Subject(s)
Bacteria/metabolism , Behavior, Animal , Biogenic Monoamines/metabolism , Brain-Gut Axis , Brain/metabolism , Depression/microbiology , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Stress, Psychological/microbiology , Animals , Bacteria/genetics , Depression/immunology , Depression/metabolism , Depression/psychology , Disease Models, Animal , Dysbiosis , Feces/microbiology , Food Preferences , Locomotion , Male , Maze Learning , Metabolomics , Mice, Inbred C57BL , Restraint, Physical , Ribotyping , Stress, Psychological/immunology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Swimming
9.
Soft Matter ; 17(36): 8308-8313, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34550160

ABSTRACT

Multi-functional materials have received wide attention due to their potential applications in various fields; therefore, developing a simple and easy strategy for the preparation of multi-functional materials is an interesting issue. In this work, a novel supramolecular gel, TP-QG, has been successfully constructed via the assembly of a simple methoxyl-pillar[5]arene host (TP) and a tripodal (tri-pyridine-4-yl)-amido-benzene guest (Q). Interestingly, TP-QG could act as a multi-functional material and showed strong fluorescence, good self-healing, host-guest stimuli-responsiveness and conductive properties. Due to these properties, TP-QG shows a fascinating application prospect. For instance, TP-QG could exhibit ultrasensitive fluorescence response for Fe3+ and F- in water via the fluorescence "ON-OFF-ON" pathway; the lowest detection limit (LOD) of TP-QG for Fe3+ was 2.32 × 10-10 M and the LOD of TP-QG-Fe for F- was 4.30 × 10-8 M. These properties permit TP-QG to act as not only a Fe3+ and F- sensor, but also an "ON-OFF-ON" fluorescence display material and an efficient logic gate. Meanwhile, the xerogel of TP-QG could remove Fe3+ from water, and the adsorption ratio was 98.68%; the xerogel of TP-QG-Fe could also remove F- from water; the removal ratio was about 87.92%. This work provides a feasible way to construct multi-functional smart materials by host-guest assembly.

10.
Protein Pept Lett ; 28(11): 1220-1229, 2021.
Article in English | MEDLINE | ID: mdl-34493183

ABSTRACT

In recent years, bioactive peptide drugs have attracted growing attention due to the increasing difficulty in developing new drugs with novel chemical structures. In addition, many diseases are linked to excessive oxidation in the human body. Therefore, the role of peptides with antioxidant activity in counteracting diseases related to oxidative stress is worth exploring. Amphibians are a major repository for bioactive peptides that protect the skin from biotic and abiotic stresses, such as microbial infection and radiation injury. We characterized the first amphibian- derived gene-encoded antioxidant peptides in 2008. Since then, a variety of antioxidant peptides have been detected in different amphibian species. In this work, the physicochemical properties of antioxidant peptides identified from amphibians are reviewed for the first time, particularly acquisition methods, amino acid characteristics, antioxidant mechanisms, and application prospects. This review should provide a reference for advancing the identification, structural analysis, and potential therapeutic value of natural antioxidant peptides.


Subject(s)
Amphibian Proteins/therapeutic use , Antioxidants/therapeutic use , Infections/drug therapy , Oxidative Stress/drug effects , Peptides/therapeutic use , Radiation Injuries/drug therapy , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Amphibians , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , Species Specificity
11.
Chempluschem ; 86(1): 146-154, 2021 01.
Article in English | MEDLINE | ID: mdl-33459522

ABSTRACT

The exploration and understanding of self-assembly and stimuli-responsive mechanisms of supramolecular systems are of fundamental importance for researchers to plan syntheses reasonably. Herein, the self-assembly and ions responsive mechanisms of a tripodal quinolinamido-based supramolecular organogel (TBT-gel) were investigated through experiments and theoretical calculations including independent gradient model (IGM), localized orbitals locator (LOL) and hole-electron theory. According to these studies, the self-assembly mechanism of TBT-gel was based on strong threefold H-bonding and π-π interactions, which induced the TBT forming helical, one-dimensional supramolecular polymer. After addition of Fe3+ into the TBT-gel, the one-dimensional supramolecular polymer had been crosslinked by the Fe3+ through coordination interaction and formed a metallogel (TBT-Fe-gel). Interestingly, the TBT-gel showed selective fluorescent response for Fe3+ and F- based on a competitive coordination mechanism. Moreover, the study on fluorescence responsive mechanism of TBT-gel for Fe3+ and F- implied the ICT mode governs both the electron excitation and de-excitation processes. The calculated results were in agreement with the corresponding experimental results. Notably, the quantum chemical calculations provided a deep understanding and visualized presentation of the assembly and stimuli-responsive mechanisms.

12.
Langmuir ; 36(45): 13469-13476, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33147040

ABSTRACT

The booming of host-guest assembly-based supramolecular chemistry provides abundant ways to construct functional systems and materials. Attracted by the important application prospect of white light emission and aggregation-induced emission (AIE) materials, herein, we report an efficient way for fabricating metal-free white light-emitting AIE materials through the supramolecular assembly of simple organic compounds: methoxyl pillar[5]arene (MP5) and tri-(pyridine-4-ylamido)benzene (TAP). By host-guest assembly, MP5 and TAP formed a supramolecular polymer (MP5-T); meanwhile, the MP5-T xerogel powder emitted white light at CIE coordinates (0.29 and 0.29). The supramolecular assembly and white light-emitting mechanisms were carefully investigated by experiments as well as quantum chemical calculations including density functional theory (DFT), reduced density gradient, electrostatic surface potential, independent gradient model, and frontier molecular orbital (highest-occupied molecular orbital-lowest-unoccupied molecular orbital) analyses. Interestingly, according to the experiments and calculations, the supramolecular assembly is critical in the white light-emitting phenomenon. Moreover, in this work, the quantum chemical calculations could not only support experimental phenomena but also provide deep understanding and visualized presentation of the assembly and emission mechanism. In addition, the obtained MP5-T solid powder could serve as a novel and easy means to make material for white light-emitting devices.

13.
PLoS One ; 15(8): e0236898, 2020.
Article in English | MEDLINE | ID: mdl-32785280

ABSTRACT

The development of fungal fruiting bodies from a hyphal thallus is inducible under low temperature (cold stress). The molecular mechanism has been subject to surprisingly few studies. Analysis of gene expression level has become an important means to study gene function and its regulation mechanism. But identification of reference genes (RGs) stability under cold stress have not been reported in famous medicinal mushroom-forming fungi Cordyceps militaris. Herein, 12 candidate RGs had been systematically validated under cold stress in C. militaris. Three different algorithms, geNorm, NormFinder and BestKeeper were applied to evaluate the expression stability of the RGs. Our results showed that UBC and UBQ were the most stable RGs for cold treatments in short and long periods, respectively. 2 RGs (UBC and PP2A) and 3 RGs (UBQ, TUB and CYP) were the suitable RGs for cold treatments in short and long periods, respectively. Moreover, target genes, two-component-system histidine kinase genes, were selected to validate the most and least stable RGs under cold treatment, which indicated that use of unstable expressed genes as RGs leads to biased results. Our results provide a good starting point for accurate reverse transcriptase quantitative polymerase chain reaction normalization by using UBC and UBQ in C. militaris under cold stress and better support for understanding the mechanism of response to cold stress and fruiting body formation in C. militaris and other mushroom-forming fungi in future research.


Subject(s)
Cold-Shock Response/genetics , Cordyceps/genetics , Cordyceps/physiology , Gene Expression Profiling/standards , Histidine Kinase/genetics , Cordyceps/enzymology , Reference Standards
14.
Photochem Photobiol Sci ; 19(10): 1373-1381, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32852021

ABSTRACT

A catechol-functionalized phenazine imidazole (PD) was tailored with 2,3-diaminophenazine and 3,4-dihydroxy benzaldehyde, and it served as a hybrid acceptor for capturing HSO4- anions. The selectivity and sensitivity of the PD receptor for anion sensing were studied. It was found that the PD receptor could not only display a preferable sensitivity to HSO4- ions with a "turn-off" fluorescence response, but also have a strong anti-interference ability toward other common anions, especially basic anions such as CH3COO-, HPO42-, and H2PO4-. The anion recognition mechanism of PD towards HSO4- is based on multiple hydrogen bond interactions. Finally, the strips for anion detection were prepared, which were verified to be a convenient and high-efficiency test kit for detecting HSO4- ions with the naked eye.


Subject(s)
Phenazines/chemistry , Sulfites/chemistry , Anions/chemistry , Fluorescence , Molecular Structure , Particle Size , Phenazines/chemical synthesis , Sulfites/chemical synthesis , Surface Properties
15.
Soft Matter ; 16(24): 5734-5739, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32525181

ABSTRACT

Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.

16.
Front Pharmacol ; 11: 580064, 2020.
Article in English | MEDLINE | ID: mdl-33597870

ABSTRACT

Caffeoylquinic acids, coumarins and dicaffeoyl derivatives are considered to be three kinds of the most abundant bioactive components in Sarcandra glabra, an anti-inflammatory herb mainly found in Southern Asia. The combined anti-inflammatory effect of three typical constituents C + R + I (chlorogenic acid + rosmarinic acid + isofraxidin) from this plant has been investigated. The result implies that targeting the MAPK-NF-κB pathway would be one of the major mechanisms involved, using LPS stimulated RAW 264.7 cells as in vitro model and LPS-induced acute lung injury in mice as in vivo model. C + R + I can significantly suppress the levels of nitric oxide (NO), pro-inflammatory cytokines, and inhibit iNOS and COX-2 expression in LPS-treated RAW264.7 macrophage cells. Western blot analysis showed that C + R + I suppressed phosphorylation of NF-κB and MAPK, including phosphorylation of p65-NF-κB, IKB, ERK, JNK and P38. Besides, C + R + I suppressed MPO protein expression, but promoted SOD and HO-1 expression, and the related targets for C, R, and I were also predicted by molecular docking. This indicated that C + R + I could alleviate oxidative stress induced by LPS, which were further verified in the in vivo model of mice with acute lung injury through the measurement of corresponding inflammatory mediators and the analysis of immunehistochemistry.

17.
Soft Matter ; 15(46): 9547-9552, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31714557

ABSTRACT

A bi-component supramolecular gel (RQ) was successfully constructed by the assembly of the gelators 4-aminophenyl functionalized naphthalimide derivative (R) and tri-(pyridine-4-yl)-functionalized trimesic amide (Q) in DMSO-H2O (6.1 : 3.9, v/v) binary solution. The gel RQ exhibits excellent self-healing capacity. Interestingly, the RQ could fluorescently detect and reversibly remove Hg2+ from water through cation-π interactions with high selectivity, efficient adsorption and quick response. The limit of lowest detection (LOD) of the RQ for Hg2+ is 4.52 × 10-8 M and the separation ratio is 91.14%. Moreover, the RQ could be efficiently recycled and regenerated with little loss via a simple treatment by I-. Notably, thin films based on RQ and RQ + Hg2+ were prepared, which could serve as convenient and efficient test tools for the detection of Hg2+ and I-, respectively. This work provided an efficient method and novel supramolecular gel material for the separation and detection of Hg2+.

18.
Soft Matter ; 15(31): 6348-6352, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31290897

ABSTRACT

A novel bis-component AIE-gel TG was facilely constructed from two "easy-to-synthesize" tripodal gelators by a simple host-guest self-assembly process. Interestingly, the TG shows strong aggregation-induced emission (AIE) and could be used for highly efficient and sensitive detection and separation of ions (CN-, Fe3+ and H2PO4-). The LODs (limits of lowest detection) of TG for CN-, Fe3+ and H2PO4- are in the range of 4.93 × 10-9-7.80 × 10-8 M. Meanwhile, the xerogel of TG could adsorb and separate Fe3+ from aqueous solutions, and the adsorption rate is 96%. In addition, a thin film based on the TG could act as a convenient test kit for the detection of CN- and Fe3+. What is more, the TG-Fe film could not only be used as an erasable secure fluorescent display material, but also as a convenient reversible H2PO4- test kit.

19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(2): 234-241, 2019 Apr 28.
Article in Chinese | MEDLINE | ID: mdl-31060680

ABSTRACT

Objective To explore the effect of hydrogen sulfide on inflammatory factors and energy metabolism of mitochondria after limbs reperfusion injury in rats. Methods Sixty rats were divided into three groups:sham operation group,control group(ischemia-reperfusion injury + saline group),and experimental group(ischemia-reperfusion injury + H2S group).Wistar rat models of limb ischemia-reperfusion injury were established.Skeletal muscle samples were collected to determine the levels of necrosis decomposition products [including myoglobin(MB),lipoprotein complex(LPC)and lipid peroxide(LPO)];blood samples were collected to determine the levels of interleukin(IL)-1,IL-6 and tumor necrosis factor-α(TNF-α);mitochondria were extracted for mitochondrial transmembrane potential measurement and ATP content detection.Statistical analysis was made on the test results. Results After ischemia reperfusion injury,the levels of MB,LPO,and LPC in skeletal muscle,liver,lung and renal tissues of the control group were significantly increased(MB:Pskeletal muscle =0.003,Pliver =0.001,Plung =0.001,Pkidney =0.001;LPO:Pskeletal muscle =0.001,Pliver =0.001,Plung =0.001,Pkidney =0.002;LPC:Pskeletal muscle =0.000,Pliver =0.002,Plung =0.002,Pkidney =0.003),and hydrogen sulfide treatment during ischemia reperfusion significantly inhibited the production of MB,LPO,and LPC(MB:Pskeletal muscle =0.021,Pliver =0.036,Plung =0.005;LPO:Pskeletal muscle =0.003,Pliver =0.008,Plung =0.010,Pkidney =0.015;LPC:Pskeletal muscle =0.002,Pliver =0.026,P lung =0.007,P kidney =0.006).Ischemia/reperfusion of lower extremity in rats resulted in increased levels of IL-1,IL-6,and TNF-α in the serum of rats,and the levels of IL-1,IL-6,and TNF-increased over time,with statistically significant differences in IL-1,IL-6,and TNF-α among groups at 3 h(IL-1:P3 h =0.019,P6 h =0.011,P9 h =0.009,$P_{12_{h}}$=0.008,and P15 h =0.002;IL-6:P3 h =0.026,P6 h =0.009,P9 h =0.002, $P_{12_{h}}$=0.002,P15 h =0.003;TNF-α:P3 h =0.002,P6 h =0.002,P9 h =0.005,$P_{12_{h}}$=0.002,P15 h =0.003).The levels of IL-1,IL-6,and TNF-α in serum were significantly inhibited during ischemia reperfusion(IL-1:P3 h =0.035,P6 h =0.039,P9 h =0.012,$P_{12_{h}}$=0.005,P15 h =0.006;IL-6:P3 h =0.042,P6 h =0.025,P9 h =0.023,$P_{12_{h}}$=0.006,P15 h =0.005;TNF-α:P3 h =0.005,P6 h =0.003,P9 h =0.022,$P_{12_{h}}$=0.005,P15 h =0.005),and such inhibitory effects became even more obvious over time.After limb ischemia and reperfusion in the control group,the mitochondrial transmembrane potential of skeletal muscle cells significantly decreased compared with that of the sham group(t=6.698;P=0.001).After hydrogen sulfide treatment,the mitochondrial membrane potential energy of the experimental group was significantly higher than that of the control group(t=7.507,P = 0.000).The ATP level in the mitochondria of ischemia reperfusion rats in the control group was significantly lower than that in the sham group(t=7.526,P = 0.000).The content of mitochondrial ATP in the experimental group was significantly higher than that in the control group after hydrogen sulfide treatment(t=8.604,P = 0.000). Conclusions Hydrogen sulfide can alleviate the injury of skeletal muscle and distal organs after limb ischemia-reperfusion and reduce local inflammatory reaction.In addition,it is valuable in alleviating mitochondrial transmembrane potential and energy metabolism disorders during reperfusion injury.


Subject(s)
Hydrogen Sulfide/pharmacology , Mitochondrial Diseases/pathology , Reperfusion Injury , Animals , Energy Metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117136, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31136864

ABSTRACT

Herein, we report a simple and novel approach for the design of fluorescent chemosensor through the self-assembly of functionalized monomer molecules. According to these approach, a novel supramolecular fluorescent chemosensor (SPMS) was successfully constructed by self-assembly of a quinoline hydrazone functionalized pillar[5]arene monomer PM. Interestingly, upon the addition of CN-, the solution of SPMS instantly shows dramatic fluorescent enhancement and emitting bright blue emission. Meanwhile, the fluorescence quantum yields show distinct increase from 0.0582 of SPMS to 0.3952 of SPMS + CN-. The detection limit (LOD) of SPMS for CN- is 9.70 × 10-8 M, which indicated high sensitivity. Moreover, the SPMS is selective for CN- even in the presence of other anions, the fluorescent detection process of SPMS for CN- was not interfered by other competitive anions (F-, Cl-, Br-, I-, N3-, OH-, SCN-, HSO4-, AcO-, H2PO4- and ClO4-). Notably, in the CN- sensing process, the self-assembly structure of the supramolecular chemosensor SPMS didn't show any disassembly. This work provides a novel approach for instant detection of CN- through a self-assembled supramolecular fluorescent chemosensor in aqueous system. Moreover, the test strips based on SPMS were fabricated, which could serve as convenient and efficient CN- test kits.

SELECTION OF CITATIONS
SEARCH DETAIL
...