Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 9(1): 12244, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31439902

ABSTRACT

Miniaturization is one of the important research directions of low frequency high power microwave sources. This paper presents a three-period coaxial slow-wave structure L-band high-power microwave source. Because the coaxial Quasi-TEM mode has no cut-off frequency, the radial size of the device can be reduced. At the same time, in order to reduce the transverse dimension, the coaxial extractor structure is introduced to realize the longitudinal mode selection and improve the conversion efficiency of the device. In simulation, the device obtains the microwave output with the central frequency of 1.53 GHz, the average power of 3.3 GW and the efficiency of 40%. By optimizing the scheme of electron beam collection, the phenomenon of pulse shortening is effectively suppressed. In the experiment, the device obtains the microwave output with the central frequency of 1.52 GHz, the average power of 3 GW, the efficiency of 33% and the pulse width of 40 ns.

2.
Rev Sci Instrum ; 89(3): 034705, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29604798

ABSTRACT

This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

3.
Rev Sci Instrum ; 86(8): 084705, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329219

ABSTRACT

In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 µs to 1 µs and from 18 µs to 1 µs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.

4.
Rev Sci Instrum ; 84(6): 064704, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822363

ABSTRACT

The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

5.
Rev Sci Instrum ; 83(2): 024707, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380113

ABSTRACT

Experimental investigation of the transparent cathode used in a relativistic magnetron with axial radiation is reported in this paper. The transparent cathode is composed of six separate stalks with the diameter of 6 mm. Under the working condition of 549 kV and ∼0.38 T, the relativistic magnetron with the transparent cathode experimentally produces a 550 MW microwave. The radiation mode is TE(11) at the frequency of 2.35 GHz. The total efficiency is 16.7%. The variations of the relative positions between the separate stalks and the anode blocks can perform the maximum difference of 4 ns in microwave duration. Compared with the conventional solid cathode, the transparent cathode provides faster startup time of 12 ns, relatively wider pulse duration of 35% and relatively higher efficiency of 10.6%.

7.
Rev Sci Instrum ; 81(4): 043303, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20441332

ABSTRACT

An all solid-state and compact pulsed strip pulse forming line (PFL) is investigated both theoretically and experimentally. The electromagnetic field distribution and the pulse formation in the strip PFL are analyzed numerically. Based on the theoretical analysis and numerical results, a rolled strip PFL with output voltage of 20 kV, pulse duration of 230 ns, and characteristic impedance of 0.5 Omega was designed and manufactured. We use the Mylar film and copper as the dielectric and conductor of the strip PFL. The dimension of the strip line is 23,000 x 400 x 1.6 mm(3) in the case in which the strip line is unrolled, and the strip line is finally rolled into a cylinder of diameter of 311 mm for the experiment. The dimension and weight are about ten times smaller than those of traditional dielectric (oil or pure water) PFL with the same electrical parameters. Two experiments were performed using the strip line. One was for a transmission line experiment, and the other was for a PFL experiment. In the experiment of transmission line, the transmission time of the voltage signal was 115 ns, and the signal had almost no distortion, which verified the design. In the PFL experiment, results gave a 17.8 kV, 270 ns (full width at half maximum) voltage pulse which was a quasisquare wave on the water load of 0.5 Omega. The current going through the load is about 35.6 kA.

SELECTION OF CITATIONS
SEARCH DETAIL
...