Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 15(5): e202102476, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35023634

ABSTRACT

Conversion of CO2 into carbonaceous fuels with the aid of solar energy has been an important research subject for decades. Owing to their excellent electron-accepting capacities, fullerene derivatives have been extensively used as n-type semiconductors. This work reports that the fulleropyrrolidine functionalized with 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole, abbreviated as DTBT-C60 , could efficiently catalyze the photoreduction of CO2 to CO. The novel C60 -chromophore dyad structure facilitated better usage of solar light and effective dissociation of excitons. Consequently, the DTBT-C60 exhibited a promising CO yield of 144 µmol gcat -1 under AM1.5G solar illumination for 24 h. Moreover, the isotope experiments demonstrated that water molecules could function as an electron source to reactivate DTBT-C60 . Impressively, DTBT-C60 exhibited an extremely durable catalytic activity for more than one week, facilitating the practical application of photochemical CO2 reaction.

2.
J Org Chem ; 86(24): 17629-17639, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34846148

ABSTRACT

The Grubbs G-I or G-II catalyst gives the ruthenium ethoxy carbene complex, which catalyzes ring-opening cross metathesis (ROCM) of a strained cyclic alkene to give a diene where one of the two alkene moieties in the product contains an ethoxy substituent. No polymeric products are detected. Hydrocarbons such as parent norbornene or substituted cyclopropenes can proceed with the reaction smoothly. Tertiary amines, N-alkylimides, esters, and aryl or alkyl bromides remain intact under the reaction conditions. In addition to vinyl ethers, vinylic esters can also be used. The time required to reach a 50% yield of the ROCM product t50 varies from 0.01 to 140 h depending on the strain and nucleophilicity of the double bond. Anchimeric participation of an electron-rich group would result in significant enhancement of the reactivity, and the t50 could be as short as several minutes. A similar substrate without such a neighboring group shows a much slower rate. An exo-norborne derivative reacts much faster than the corresponding endo-isomer. Alkenes with poor nucleophilicity are less favored for the ROCM process, so is less strained cyclooctene.

3.
Macromol Rapid Commun ; 41(9): e2000021, 2020 May.
Article in English | MEDLINE | ID: mdl-32212226

ABSTRACT

Aqueous palladium-catalyzed direct arylation polymerization (DArP) of 2-bromothiophene derivatives 6-(2-(2-bromothiophen-3-yl)ethoxy)hexyl trimethylammonium bromide (T1) and 4-(2-(2-bromothien-3-yl)ethoxy)butylsulfonate (T2) is achieved. The supporting ligand, triphenylphosphine-3,3',3''-trisulfonic acid trisodium salt (m-TPPTs), facilitates DArP of both derivatives; however, its separation from the polymers by dialysis is difficult due to its strong aggregation in water and N,N-dimethylacetamide (DMAc). This is supported by dynamic light scattering, gel permeation chromatography (GPC), and single-crystal X-ray crystallography. Pyrimidine-Pd(OAc)2 is utilized in the DArP of T1 to afford PT1 without ligand contamination. Density functional theory calculations to determine the coordinating capability of the carboxylate/pivalic acid/water to palladium indicate the viability of implementing DArP in water. Finally, polyelectrolyte molecular-weight overestimation by GPC in water is attributed to the polyelectrolyte effect. Aggregation of the conjugated polyelectrolytes leads to a contracted hydrodynamic volume, and the molecular weight and dispersity assessed by GPC in DMAc significantly deviate from the actual values. An objective approach to evaluate the molecular weight for conjugated polyelectrolytes requires further development.


Subject(s)
Palladium/chemistry , Sulfonic Acids/chemistry , Trimethyl Ammonium Compounds/chemistry , Catalysis , Molecular Structure , Polymerization , Water/chemistry
4.
Chem Sci ; 11(15): 3836-3844, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-34122851

ABSTRACT

Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s-PSSe, PSTe, and PSeTe-through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)-from a thiophene unit via a selenophene unit to a tellurophene unit-to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.

5.
ACS Omega ; 3(12): 18656-18662, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458431

ABSTRACT

Two stacking manners, that is, π- and lamellar stacking, are generally found for organic semiconductors, in which the π-stacking occurs between conjugated groups and the lamellar stacking refers to the separation of the conjugated and aliphatic moieties. The stacking principles are yet not well-defined. In this work, extended transition state-natural orbitals for chemical valence (ETS-NOCV), an energy decomposition analysis, is utilized to examine the π- and lamellar stacking for a series of naphthalenetetracarboxylic diimide (R-NDI) crystals. The crucial role of dispersion is validated. The perception that π-stacking is merely determined by the conjugated moiety is challenged. The stacking principles are associated with the closest packing model. Nanoscopic phase separation of conjugated and aliphatic moieties and the formation of lamellar and herringbone motifs in the R-NDIs can thus be clarified. Moreover, the interactions between NDI and the alkyl chain are investigated, revealing that the interactions can be significant, being contradictory to the conventional point of view. Along with R-NDIs, additional organic crystals consisting of various conjugated functionalities and substituents are also investigated by ETS-NOCV. The sampling scope is up to 108 conjugated molecules. The dominant role of dispersion force irrespective of the variation in the conjugated moieties and substituents is further confirmed. It is envisaged that the established principles are applicable to other organic semiconductors. The perspective toward the π- and lamellar stacking might be modified, paving the way for ultimate morphological control.

SELECTION OF CITATIONS
SEARCH DETAIL
...