Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Neurosci Lett ; 770: 136356, 2022 01 23.
Article in English | MEDLINE | ID: mdl-34808268

ABSTRACT

Opioid receptors play important roles in, among others, learning and memory, emotional responses, addiction, and pain. In recent years, the cerebellum has received increasing attention for its role in non-motor functions. The Purkinje cell (PC) is the only efferent neuron in the cerebellar cortex, and receives glutamatergic synaptic inputs from the parallel fibers (PF) formed by the axons of granule cells. Studies have shown that opioid receptors are expressed during the development of cerebellar cells. However, the distribution of opioid receptors, their subtypes in cerebellar PF-PC synapses, and their effects on synaptic transmission remain unclear. To examine these questions, we used whole-cell patch clamp recordings and pharmacological methods to determine the effects of activating three different opioid receptor subtypes on synaptic transmission at PF-PC synapses. In the presence of picrotoxin, mouse cerebellar slices were perfused with agonists or blockers of different opioid receptor subtypes, and the changes in excitatory postsynaptic currents (EPSCs) were examined. Both agonists of µ-opioid receptors (MOR) and δ-opioid receptors (DOR) significantly reduced the amplitude and area under the curve of PF-PC EPSCs in a concentration-dependent manner, accompanied by an increase in the paired-pulsed ratio (PPR). These effects could be blocked by respective receptor antagonists. In contrast, no significant changes were found after the application of κ-opioid receptor (KOR) agonists. In conclusion, MOR and DOR are present at the axon terminals of PF in the mouse cerebellar cortex, whereas no or negligible amounts of KOR are found. Activation of MOR and DOR regulates PF-PC synaptic transmission via inhibition of glutamate (Glu) release in cerebellar cortex in mice. We also found that endogenous opioid peptides are present in PF-PC synapses of mouse cerebellum, which also can inhibit the release of Glu.


Subject(s)
Purkinje Cells/metabolism , Receptors, Opioid/metabolism , Synaptic Transmission , Animals , Excitatory Postsynaptic Potentials , Glutamic Acid/metabolism , Male , Mice , Purkinje Cells/drug effects , Purkinje Cells/physiology , Receptors, Opioid/agonists
2.
Sheng Li Xue Bao ; 73(1): 35-41, 2021 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-33665658

ABSTRACT

Fentanyl as a synthetic opioid works by binding to the mu-opioid receptor (MOR) in brain areas to generate analgesia, sedation and reward related behaviors. As we know, cerebellum is not only involved in sensory perception, motor coordination, motor learning and precise control of autonomous movement, but also important for the mood regulation, cognition, learning and memory. Previous studies have shown that functional MORs are widely distributed in the cerebellum, and the role of MOR activation in cerebellum has not been reported. The aim of the present study was to investigate the effects of fentanyl on air-puff stimulus-evoked field potential response in the cerebellar molecular layer using in vivo electrophysiology in mice. The results showed that perfusion of 5 µmol/L fentanyl on the cerebellar surface significantly inhibited the amplitude, half width and area under the curve (AUC) of sensory stimulation-evoked inhibitory response P1 in the molecular layer. The half-inhibitory concentration (IC50) of the fentanyl-induced suppression of P1 amplitude was 4.21 µmol/L. The selective MOR antagonist CTOP abolished fentanyl-induced inhibitory responses in the molecular layer. However, application of CTOP alone increased the amplitude and AUC of P1. Notably, fentanyl significantly inhibited the tactile stimulation-evoked response of molecular layer interneurons (MLIs) and the spontaneous firing of MLIs. The results suggest that fentanyl attenuates air-puff stimulus-evoked field potential response in the cerebellar molecular layer via binding to MOR to restrain the spontaneous and evoked firing of MLIs.


Subject(s)
Cerebellum , Fentanyl , Animals , Evoked Potentials , Fentanyl/pharmacology , Interneurons , Mice , Physical Stimulation
3.
Front Syst Neurosci ; 14: 51, 2020.
Article in English | MEDLINE | ID: mdl-32848643

ABSTRACT

Aim: To examine the effects of fentanyl, a potent mu-opioid receptor (MOR) agonist, on-air puff-evoked responses in Purkinje cells (PCs), and molecular layer interneurons (MLIs) using in vivo patch-clamp recordings in anesthetized mice. Methods: Male mice 6-8 weeks-old were anesthetized and fixed on a custom-made stereotaxic frame. The cerebellar surface was exposed and perfused with oxygenated artificial cerebrospinal fluid (ACSF). Patch-clamp recordings in the cell-attached mode were obtained from PCs and MLIs. Facial stimulation by air-puff of the ipsilateral whisker pad was performed through a pressurized injection system. Fentanyl citrate, CTOP, and H-89 dissolved in ACSF were perfused onto the cerebellar surface. Results: Fentanyl significantly inhibited the amplitude and area under the curve (AUC) of sensory stimulation-evoked inhibitory responses in PCs. Although fentanyl did not influence the frequency of simple spikes (SSs), it decreased the pause of SS. The IC50 of the fentanyl-induced suppression of the P1 response amplitude was 5.53 µM. The selective MOR antagonist CTOP abolished fentanyl-induced inhibitory responses in PCs. However, the application of CTOP alone increased the amplitude, AUC of P1, and the pause of SS. Notably, fentanyl significantly inhibited the tactile-evoked response of MLIs but did not affect their spontaneous firing. The fentanyl-induced decrease of inhibitory responses in PCs was partially prevented by a PKA inhibitor, H-89. Conclusions: These results suggest that fentanyl binds to MORs in MLIs to reduce GABAergic neurotransmission in MLI-PC projections and one potential mechanism is via modulation of the cAMP-PKA pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...