Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Neurosci Bull ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700806

ABSTRACT

Behavioral studies play a crucial role in unraveling the mechanisms underlying brain function. Recent advances in optogenetics, neuronal typing and labeling, and circuit tracing have facilitated the dissection of the neural circuitry involved in various important behaviors. The identification of monosynaptic connections, both upstream and downstream of specific neurons, serves as the foundation for understanding complex neural circuits and studying behavioral mechanisms. However, the practical implementation and mechanistic understanding of monosynaptic connection tracing techniques and functional identification remain challenging, particularly for inexperienced researchers. Improper application of these methods and misinterpretation of results can impede experimental progress and lead to erroneous conclusions. In this paper, we present a comprehensive description of the principles, specific operational details, and key steps involved in tracing anterograde and retrograde monosynaptic connections. We outline the process of functionally identifying monosynaptic connections through the integration of optogenetics and electrophysiological techniques, providing practical guidance for researchers.

2.
Chem Sci ; 15(17): 6285-6313, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699256

ABSTRACT

Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.

3.
Hortic Res ; 11(5): uhae085, 2024 May.
Article in English | MEDLINE | ID: mdl-38799128

ABSTRACT

Lignin accumulation can enhance the disease resistance of young tea shoots (Camellia sinensis). It also greatly reduces their tenderness, which indirectly affects the quality and yield of tea. Therefore, the regulation of lignin biosynthesis appears to be an effective way to balance tenderness and disease resistance in young tea shoots. In this study, we identified a laccase gene, CsLAC17, that is induced during tenderness reduction and gray blight infection in young tea shoots. Overexpression of CsLAC17 significantly increased the lignin content in transgenic Arabidopsis, enhancing their resistance to gray blight and decreasing stem tenderness. In addition, we found that CsLAC17 was negatively regulated by the upstream CsmiR397a by 5'-RLM-RACE, dual-luciferase assay, and transient expression in young tea shoots. Interestingly, the expression of CsmiR397a was inhibited during tenderness reduction and gray blight infection of young tea shoots. Overexpression of CsmiR397a reduced lignin accumulation, resulting in decreased resistance to gray blight and increased stem tenderness in transgenic Arabidopsis. Furthermore, the transient overexpression of CsmiR397a and CsLAC17 in tea leaves directly confirms the function of the CsmiR397a-CsLAC17 module in lignin biosynthesis and its effect on disease resistance. These results suggest that the CsmiR397a-CsLAC17 module is involved in balancing tenderness and gray blight resistance in young tea shoots by regulating lignin biosynthesis.

4.
Natl Sci Rev ; 11(4): nwae082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38686177

ABSTRACT

The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.

5.
Nat Commun ; 15(1): 3641, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684736

ABSTRACT

Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.

6.
Proc Natl Acad Sci U S A ; 121(14): e2321615121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530892

ABSTRACT

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.


Subject(s)
Citrus , Citrus/chemistry , Domestication , Plant Breeding , Methylation , Methyltransferases/metabolism
7.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438342

ABSTRACT

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

9.
Food Chem X ; 21: 101004, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38434694

ABSTRACT

This study aimed to compare the changes in physicochemical properties of the starch isolated from three banana cultivars (Musa AAA group, Cavendish subgroup; Musa ABB group, Pisang Awak subgroup; Musa AA group, Huangdijiao subgroup) at five different maturity stages. The results revealed both similarities and significant differences in micromorphology and physicochemical characteristics of the three banana varieties during different growth stages. Apparent amylose content and particle size of the three starches increased with the ripeness of banana. Light microscopy and scanning electron microscopy revealed that starch particles of the three starches had different microscopic characteristics, and that banana starch morphology was basically unchanged at various growth stages. Moreover, the pasting and thermal properties of the banana starches were significantly different at various growth stages. The resistant starch content of the three banana cultivars was about 80% at all growth stages. Musa AAA group, Cavendish subgroup had the highest resistant starch content at stage Ⅴ. This study provides insights into the starch changes of three banana cultivars during ripening.

10.
Adv Biol (Weinh) ; 8(4): e2300668, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327153

ABSTRACT

DNA methyltransferase is significant in cellular activities and gene expression, and its aberrant expression is closely linked to various cancers during initiation and progression. Currently, there is a great demand for reliable and label-free techniques for DNA methyltransferase evaluation in tumor diagnosis and cancer therapy. Herein, a low-background fluorescent RNA aptamer-based sensing approach for label-free quantification of cytosine-guanine (CpG) dinucleotides methyltransferase (M.SssI) is reported. The fluorogenic light-up RNA aptamers-based strategy exhibits high selectivity via restriction endonuclease, padlock-based recognition, and RNA transcription. By combining rolling circle amplification (RCA), and RNA transcription with fluorescence response of RNA aptamers of Spinach-dye compound, the proposed platform exhibited efficiently ultrahigh sensitivity toward M.SssI. Eventually, the detection can be achieved in a linear range of 0.02-100 U mL-1 with a detection limit of 1.6 × 10-3 U mL-1. Owing to these superior features, the method is further applied in serum samples spiked M.SssI, which delivers a recovery ranging from 92.0 to 107.0% and a relative standard deviation <7.0%, providing a promising and practical tool for determining M.SssI in complex biological matrices.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/genetics , DNA Modification Methylases , Nucleic Acid Amplification Techniques/methods , DNA/metabolism , RNA
11.
Mol Clin Oncol ; 20(3): 25, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410186

ABSTRACT

Ailanthone (AIL), a monomer derived from ailanthus in Chinese medicine, has been demonstrated to have antitumor effects, albeit the underlying mechanism is unknown. Autophagy and ferroptosis are two modes of cell death that have been championed as potential mechanisms implicated in the antitumor effects of various drugs. The present study demonstrated that AIL effectively suppresses the Lewis cell proliferation in non-small cell lung cancer using MTT and colony formation assays. Autophagy and ferroptosis were verified using western blotting, immunofluorescence and ferroptosis detection. Additionally, the findings revealed that regulating the AMPK/mTOR/p70S6k signaling pathway may be the underlying mechanism for the antitumor effect of AIL. The present study established a theoretical foundation for further research into the utilization of AIL as a novel antitumor approach.

12.
Sci Adv ; 10(5): eadl5432, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295163

ABSTRACT

Activation of carbon-hydrogen (C-H) bonds is of utmost importance for the synthesis of vital molecules. Toward achieving efficient photocatalytic C-H activation, our investigation revealed that incorporating hydrophilic C≡N-Sb(CN)3 sites into hydrophobic sp2 carbon-conjugated covalent organic frameworks (sp2-c-COFs) had a dual effect: It simultaneously enhanced charge separation and improved generation of polar reactive oxygen species. Detailed spectroscopy measurements and simulations showed that C≡N-Sb(CN)3 primarily functioned as water capture sites, which were not directly involved in photocatalysis. However, the potent interaction between water molecules and the Sb(CN)3-modified framework notably enhanced charge dynamics in hydrophobic sp2-c-COFs. The reactive species ·O2- and ·OH (ad) subsequently combined with benzyl radical, leading to the formation of benzaldehyde, benzyl alcohol, and lastly benzyl benzoate. Notably, the Sb(CN)3-modified sp2-c-COFs exhibited a 54-fold improvement in reaction rate as compared to pristine sp2-c-COFs, which achieved a remarkable 68% conversion rate for toluene and an 80% selectivity for benzyl benzoate.

13.
Support Care Cancer ; 32(1): 14, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060009

ABSTRACT

BACKGROUND: Although both EQ-5D-3L(3L) and EQ-5D-5L(5L) have demonstrated good measurement properties in several patient populations, there is currently limited evidence comparing the measurement properties of 3L and 5L in family caregivers (FCs) of cancer patients. PURPOSE: This study aimed to compare the measurement properties of 3L and 5L in a sample of family caregivers of cancer patients. METHODS: A consecutive sample of FCs of cancer patients recruited from three tertiary hospitals were invited to complete the two versions of the EQ-5D in two rounds of interviews. We compared i) the ceiling effect using the McNemar's test, ii) test-retest reliability using intraclass correlation coefficient (ICC) and Cohen's Kappa, iii) convergent validity using Spearman's rank correlation coefficient, iv) known-group validity using F-statistic, v) and discriminant capacity using ordinal logistic regression. RESULTS: A total of 416 FCs completed the baseline questionnaire and 120 caregivers completed the follow-up questionnaire. Ceiling effects were smaller in 5L (12.5%) than in 3L (20.7%). The convergent validity (r = 0.344-0.771), known-groups validity (Fratio5L/3L = 2.06-4.09), discriminant capacity (ES = 0.341-0.396), and test-retest reliability (ICC = 0.725) of the 5L were slightly better than those of the 3L in China. CONCLUSION: The current study found both 3L and 5L to be suitable for use by FCs of cancer patients. However, 5L showed superior measurement properties compared to 3L and therefore could be the preferred instrument when EQ-5D data of cancer patients FCs is required.


Subject(s)
Neoplasms , Quality of Life , Humans , Caregivers , Reproducibility of Results , East Asian People , Psychometrics , Surveys and Questionnaires , Health Status
15.
Int J Biol Macromol ; 253(Pt 3): 126903, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37714239

ABSTRACT

In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.


Subject(s)
Graphite , Carbon , Electric Conductivity , Electronics , Hydrogels
16.
Ear Nose Throat J ; : 1455613231189055, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649351

ABSTRACT

Objectives: To explore the clinical manifestations and vestibular-evoked myogenic potential (VEMP) characteristics in patients diagnosed with benign recurrent vertigo (BRV) accompanied by cochlear symptoms or migraine history. Methods: A total of 34 patients were diagnosed with BRV (57 ears) and 30 healthy volunteers (60 ears) were recruited. They were divided into 4 groups: Group A consisted of 17 patients diagnosed as BRV with cochlear symptoms (21 ears), Group B consisted of 11 patients diagnosed as BRV with migraine history (22 ears), and Group C consisted of 7 patients with BRV without cochlear symptoms and migraine history (14 ears). Group D, as a Normal control (NC) group, consisted of 30 healthy volunteers without a history of migraine and cochlear symptoms. Detailed consultations and VEMP testing were performed separately. The VEMPs elicitation rate, amplitude ratio at different frequencies and amplitude statistics were compared and analyzed among the 4 groups. Results: The amplitudes of cervical vestibular evoked myogenic potential (cVEMP) have significant differences between Groups D and A, and Group C, under 500 Hz (PAD = .017, PBD = .052, PCD = .044), but the amplitudes of cVEMP have significant differences between Groups D and A, and Group B under 1000 Hz, respectively (PAD = .008, PBD = .020, PCD = .119). The amplitudes of ocular vestibular evoked myogenic potential (oVEMP) have significant differences between Groups D and A, and Group B, under 500 Hz, respectively (PAD = .029, PBD = .005, PCD = .198). oVEMP amplitudes significantly differ between Groups D and A under 1000 Hz (PAD = .049, PBD = .079, PCD = .103). The statistical difference was absent in elicit rates of cVEMP and oVEMP between the NC and experimental groups (cVEMP: PAD = .525, PBD = .917, PCD = .374; oVEMP: PAD = .678, PBD = .523, PCD = .427). Moreover, there is no significant difference between the NC group and experimental groups among VEMPs and VEMP frequency amplitude ratio (P > .05). Conclusion: VEMPs could be a diagnostic indicator for BRV patients with cochlear symptoms. The pathogenesis of BRV may be related to damage to the otolithic apparatus.

20.
Nature ; 621(7977): 66-70, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37558882

ABSTRACT

The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a 'demon', could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4 and high-temperature superconductivity in, for example, metal hydrides3,5-7. Here, we present evidence for a demon in Sr2RuO4 from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the ß and γ bands, the demon is gapless with critical momentum qc = 0.08 reciprocal lattice units and room-temperature velocity v = (1.065 ± 0.12) × 105 m s-1 that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle-hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...