Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 2): 132500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763234

ABSTRACT

Bamboo, as a renewable bioresource, exhibits advantages of fast growth cycle and high strength. Bamboo-based composite materials are a promising alternative to load-bearing structural materials. It is urgent to develop high-performance glued-bamboo composite materials. This study focused on the chemical bonding interface to achieve high bonding strength and water resistance between bamboo and dialdehyde cellulose-polyamine (DAC-PA4N) adhesive by activating the bamboo surface. The bamboo surface was initially modified in a directional manner to create an epoxy-bamboo interface using GPTES. The epoxy groups on the interface were then chemically crosslinked with the amino groups of the DAC-PA4N adhesive, forming covalent bonds within the adhesive layer. The results demonstrated that the hot water strength of the modified bamboo was improved by 75.8 % (from 5.17 to 9.09 MPa), and the boiling water strength was enhanced by 232 % (from 2.10 to 6.99 MPa). The bonding and flexural properties of this work are comparable to those of commercial phenolic resin. The activation modification of the bamboo surface offers a novel approach to the development of low-carbon, environmentally friendly, and sustainable bamboo engineering composites.


Subject(s)
Adhesives , Cellulose , Sasa , Cellulose/chemistry , Cellulose/analogs & derivatives , Adhesives/chemistry , Sasa/chemistry , Surface Properties , Water/chemistry , Epoxy Resins/chemistry
2.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675618

ABSTRACT

Mycobacterium tuberculosis (Mtb) is one of the major causes of human death. In its battle with humans, Mtb has fully adapted to its host and developed ways to evade the immune system. At the same time, the human immune system has developed ways to respond to Mtb. The immune system responds to viral and bacterial infections through a variety of mechanisms, one of which is alternative splicing. In this study, we summarized the overall changes in alternative splicing of the transcriptome after macrophages were infected with Mtb. We found that after infection with Mtb, cells undergo changes, including (1) directly reducing the expression of splicing factors, which affects the regulation of gene expression, (2) altering the original function of proteins through splicing, which can involve gene truncation or changes in protein domains, and (3) expressing unique isoforms that may contribute to the identification and development of tuberculosis biomarkers. Moreover, alternative splicing regulation of immune-related genes, such as IL-4, IL-7, IL-7R, and IL-12R, may be an important factor affecting the activation or dormancy state of Mtb. These will help to fully understand the immune response to Mtb infection, which is crucial for the development of tuberculosis biomarkers and new drug targets.


Subject(s)
Alternative Splicing , Macrophages , Mycobacterium tuberculosis , RNA, Messenger , Tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/immunology , Tuberculosis/genetics , Tuberculosis/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Gene Expression Regulation , Interleukin-4/genetics , Interleukin-4/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
4.
Int J Biol Macromol ; 265(Pt 2): 131053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521299

ABSTRACT

How to efficiently produce high performance plywood is of particular interest, while its sensitivity to moisture is overcome. This paper presents a simple and scalable strategy for the preparation of high-performance plywood based on the chemical bonding theory; a wood interfacial functionalized platform (WIFP) based on (3-aminopropyl) triethoxysilane (APTES) was established. Interestingly, the APTES-enhanced dialdehyde cellulose-based adhesive (DAC-APTES) was able to effectively establish chemically active adhesive interfaces; the dry/wet shear strength of WIFP/DAC-APTES adhesive was 3.15/1.31 MPa, which was much higher than 0.7 MPa (GB/T 9846-2015). The prepared plywood showed excellent wood-polymer interface adhesion, which exceeded the force that the wood itself could withstand. In addition, the DAC-APTES adhesive exhibits moisture evaporation-induced curing behavior at room temperature and can easily support the weight of an adult weighing 65.7 Kg. This research provides a novel approach for functionalized interface design of wood products, an effective means to prepare high-performance plywood.


Subject(s)
Cellulose , Silanes , Wood , Adult , Humans , Polymers , Propylamines
5.
ACS Appl Mater Interfaces ; 16(6): 7950-7960, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306456

ABSTRACT

Polysaccharide-based adhesives, especially chitosan (CS)-derived adhesives, serve as promising sustainable alternatives to traditional adhesives. However, most demonstrate a poor adhesive strength. Inspired by the inherent layered structure of marine arthropods (lobsters), a core-shell structure (SiO2-NH2@OPG) with amine-functionalized silica (SiO2-NH2) as the core and oxidized pyrogallol (OPG) as the shell is prepared in this study. The compound is blended with CS to produce a structural biomimetic wood adhesive (SiO2-NH2@OPG/CS) with excellent performance. In addition to thermocompressive curing, this adhesive exhibits a water-evaporation-induced curing behavior at room temperature. With reference to the design mechanism of the lobster cuticle, this microphase-separated structure consists of clustered nanofibers with varying amounts of SiO2-NH2@OPG particles between the fibers. This intriguing microphase structure and its mechanical effects could offer a powerful solution for improving the functional modification of wood composites.


Subject(s)
Chitosan , Chitosan/chemistry , Adhesives/chemistry , Biomimetics , Silicon Dioxide
6.
EJNMMI Phys ; 11(1): 7, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195785

ABSTRACT

OBJECTIVE: To improve the PET image quality by a deep progressive learning (DPL) reconstruction algorithm and evaluate the DPL performance in lesion quantification. METHODS: We reconstructed PET images from 48 oncological patients using ordered subset expectation maximization (OSEM) and deep progressive learning (DPL) methods. The patients were enrolled into three overlapped studies: 11 patients for image quality assessment (study 1), 34 patients for sub-centimeter lesion quantification (study 2), and 28 patients for imaging of overweight or obese individuals (study 3). In study 1, we evaluated the image quality visually based on four criteria: overall score, image sharpness, image noise, and diagnostic confidence. We also measured the image quality quantitatively using the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), contrast-to-background ratio (CBR), and contrast-to-noise ratio (CNR). To evaluate the performance of the DPL algorithm in quantifying lesions, we compared the maximum standardized uptake values (SUVmax), SBR, CBR, SNR and CNR of 63 sub-centimeter lesions in study 2 and 44 lesions in study 3. RESULTS: DPL produced better PET image quality than OSEM did based on the visual evaluation methods when the acquisition time was 0.5, 1.0 and 1.5 min/bed. However, no discernible differences were found between the two methods when the acquisition time was 2.0, 2.5 and 3.0 min/bed. Quantitative results showed that DPL had significantly higher values of SBR, CBR, SNR, and CNR than OSEM did for each acquisition time. For sub-centimeter lesion quantification, the SUVmax, SBR, CBR, SNR, and CNR of DPL were significantly enhanced, compared with OSEM. Similarly, for lesion quantification in overweight and obese patients, DPL significantly increased these parameters compared with OSEM. CONCLUSION: The DPL algorithm dramatically enhanced the quality of PET images and enabled more accurate quantification of sub-centimeters lesions in patients and lesions in overweight or obese patients. This is particularly beneficial for overweight or obese patients who usually have lower image quality due to the increased attenuation.

7.
Micromachines (Basel) ; 14(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004885

ABSTRACT

This paper proposes a two-dimensional precision level for real-time measurement using a zoom fast Fourier transform (zoom FFT)-based decoupling algorithm that was developed and integrated in an FPGA. This algorithm solves the contradiction between obtaining high resolution and obtaining high measurement speed, and achieves both high angle-resolution measurement and real-time measurement. The proposed level adopts a silicone-oil surface as the angle-sensitive interface and combines the principle of homodyne interference. By analyzing the frequency of the interference fringes, the angle variation can be determined. The zoom-FFT-based decoupling algorithm improves the system's frequency resolution of the interference fringes, thereby significantly enhancing the angle resolution. Furthermore, this algorithm improves the efficiency of angle decoupling, while the angle decoupling process can also be transplanted to the board to realize real-time measurement of the level. Finally, a prototype based on the level principle was tested to validate the effectiveness of the proposed method. The principle analysis and test results showed that the angle resolution of the prototype improved from 9 arcsec to about 0.1 arcsec using this angle-solution method. At the same time, the measurement repeatability of the prototype was approximately ±0.2 arcsec. In comparison with a commercial autocollimator, the angle measurement accuracy reached ±0.6 arcsec.

8.
Int J Biol Macromol ; 253(Pt 2): 126672, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660859

ABSTRACT

Herein, a high-performance sucrose-tannin bio-based adhesive is developed based on consisting of oxidized sucrose (OS), tannin acid (TA), SiO2 nanoparticles and 2,2'-disulfanediylbis (ethan-1-amine) (DBA) by a facile chemical cross-linking strategy. The OS-TA and OS-TA@SiO2 bio-based adhesives are characterized by XPS, FTIR, and 13C NMR, while the bonding performance is also investigated using shear strength test. Results show that the optimal formulation of OS-TA bio-based adhesive is a 2:1:1 mass ratio for OS: TA: DBA. When the mass fraction of SiO2 is 15 % and the solid content of main components is 50 %, the OS-TA@SiO2 bio-based adhesive has excellent bonding strength. Relative to OS-TA, the wet bonding strength of the OS-TA@SiO2 enhanced from 1.16 MPa to 1.85 MPa, while the dry bonding strength improved from 1.90 MPa to 2.50 MPa. The wood failure rate of the plywood fabricated by using the OS-TA@SiO2 bio-based adhesive reaches 80 %. Therefore, relying on the high flexibility of dynamic disulfide bonds, adding SiO2 nanoparticles into the adhesive system can facilitate greatly the mechanical interlocking effect and make the chemical cross-linking network more compact through the synergistic chemical interactions. This work provides new insights into producing green and renewable bio-based wood adhesives using sucrose and tannin.


Subject(s)
Sucrose , Tannins , Tannins/chemistry , Adhesives/chemistry , Schiff Bases , Silicon Dioxide , Disulfides
9.
Materials (Basel) ; 16(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37297155

ABSTRACT

The performance of urea-formaldehyde (UF) resin and its formaldehyde emission is a natural contradiction. High molar ratio UF resin performance is very good, but its formaldehyde release is high; low molar ratio UF resin formaldehyde release is reduced, but the resin itself performance becomes very bad. In order to solve this traditional problem, an excellent strategy of UF resin modified by hyperbranched polyurea is proposed. In this work, hyperbranched polyurea (UPA6N) is first synthesized by a simple method without any solvent. UPA6N is then added into industrial UF resin in different proportions as additives to manufacture particleboard and test its related properties. UF resin with a low molar ratio has a crystalline lamellar structure, and UF-UPA6N resin has an amorphous structure and rough surface. The results show that internal bonding strength increased by 58.5%, modulus of rupture increased by 24.4%, 24 h thickness swelling rate (%) decreased by 54.4%, and formaldehyde emission decreased by 34.6% compared with the unmodified UF particleboard. This may be ascribed to the polycondensation between UF and UPA6N, while UF-UPA6N resin forms more dense three-dimensional network structures. Finally, the application of UF-UPA6N resin adhesives to bond particleboard significantly improves the adhesive strength and water resistance and reduces formaldehyde emission, suggesting that the adhesive can be used as a green and eco-friendly adhesive resource for the wood industry.

10.
Int J Biol Macromol ; 244: 125345, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37327928

ABSTRACT

Nowadays, green, clean, and efficient sustainable development has become the world's mainstream industrial development. However, the bamboo/wood industry is still in the status quo with high fossil resource dependence and significant greenhouse gas emissions. Herein, a low-carbon and green strategy to produce bamboo composites is developed. The bamboo interface was modified directionally to a bamboo carboxy/aldehyde interface by using a TEMPO/NaIO4 system, and then chemically cross-linked with chitosan to produce active bonding bamboo composite (ABBM). It was confirmed that the chemical bond cross-linking (CN, N-C-N, electrostatic interactions, hydrogen bonding) in the gluing region was helpful to obtain the excellent dry bonding strength (11.74 MPa), water resistance (5.44 MPa), and anti-aging properties (decreased by 20 %). This green production of ABBM solves the problem of poor water resistance and aging resistance of all-biomass-based chitosan adhesives. It can replace bamboo composites produced using fossil-based adhesives to meet the requirements of the construction, furniture, and packaging industries, changing the previous situation of composite materials requiring high temperature pressing and highly dependent on fossil-based adhesives. This provides a greener and cleaner production method for the bamboo industry, as well as more options for the global bamboo industry to achieve green and clean production goals.


Subject(s)
Chitosan , Carbon , Wood , Water/chemistry
11.
Carbohydr Polym ; 305: 120573, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737209

ABSTRACT

Herein, an activated wood surface rich in CHO groups was constructed by spraying a sodium periodate aqueous solution on a natural wood surface. Besides, microcrystalline cellulose was functionalized to obtain aminated cellulose, which was dissolved in an aqueous solution and used as a specific adhesive. Subsequently, an ultrastrong wood bonding interface was co-constructed with the activated wood surface and aminated cellulose, which was formed by a chemical covalent reaction between aldehyde groups at the activated wood interface and amino groups on aminated cellulose. The dry, hot-water, and boiling-water lap shear strengths of the plywood specimens were 1.47, 1.07, and 1.08 MPa, respectively. The boiling-water strength of the plywood made from the activated wood surface achieved increased to 1.08 MPa from 0 MPa of the plywood constructed on the nonactivated wood surface. The chemical crosslinking reaction and bonding mechanism between the adhesive and activated wood surface were clarified by density functional theory calculations, attenuated total reflectance-Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results showed that chemical bonding (aminal NCN and imine CN) at the bonding interface played an important part in improving the water resistance and bonding strength. This work provides new concepts for designing durable and moisture-resistant wood products.

12.
Ann Nucl Med ; 37(1): 60-69, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36346503

ABSTRACT

OBJECTIVE: Molecular imaging of prostate-specific membrane antigen (PSMA) inhibitors has become a favorite for prostate cancer (PCa). This study aimed to estimate the dosimetry and the preliminary clinical application of the [99mTc]Tc-HYNIC-PSMA-XL-2, which is a novel imaging tracer invented by our team that can specifically targets PSMA for PCa and its metastases. METHODS: The single-photon emission computed tomography (SPECT) whole-body (WB) planar images were collected on 6 patients at 0.5, 1.0, 2.0, 4.0 and 8.0 h after 99mTc-PSMA-XL-2 injection, respectively. The SPECT/computed tomography (CT) scan was carried out immediately following the WB planar image scan performed after 2.0 h. The volumes of interest (VOIs) of the bladder, heart wall, intestines, kidneys, liver, lungs, and spleen were segmented in the SPECT/CT images. VOIs of the salivary glands and the whole body were drawn in SPECT planar images. The dosimetry toolkit was used to process the data and project the SPECT/CT images onto planar images. The dosimetry analysis was performed using the IDAC-Dose dosimetry software. Furthermore, other PCa patients were enrolled to study the preliminary clinical application of [99mTc]Tc-HYNIC-PSMA-XL-2. RESULTS: The clearance of [99mTc]Tc-HYNIC-PSMA-XL-2 is primarily by the hepatobiliary and intestinal system, due to its lipophilic characteristic. The effective half-life of [99mTc]Tc-HYNIC-PSMA-XL-2 is about 3.90 h. High absorbed doses were observed in the salivary glands (1.93E-02 ± 3.88E-03 mSv/MBq), kidneys (1.63E-02 ± 7.32E-03 mSv/MBq) and spleen (1.21E-02 ± 2.64E-03 mSv/MBq). The total body effective dose was 4.84E-03 ± 9.30E-05 mSv/MBq. The preliminary clinical case indicated that [99mTc]Tc-HYNIC-PSMA-XL-2 SPECT/CT could detect the primary prostate lesion, lymph node and bone metastases comprehensively. CONCLUSION: [99mTc]Tc-HYNIC-PSMA-XL-2 is a safe SPECT/CT tracer, which can detect prostate malignant lesions without interference from the bladder. In addition, the malignant lesions of the lymph node and bone of PCa patients also can be detected efficiently.


Subject(s)
Prostatic Neoplasms , Humans , Male , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Radiometry , Single Photon Emission Computed Tomography Computed Tomography , Tomography, Emission-Computed, Single-Photon/methods
13.
Curr Microbiol ; 80(1): 43, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536230

ABSTRACT

To isolate ß-galactosidase producing bacterial resources, a novel Gram-stain-negative, strictly aerobic bacterial strain designated as A6T was obtained from a farmland soil sample. Cells of the strain were rod-shaped (0.4-0.7 µm × 1.8-2.2 µm) without flagella and motility. Strain A6T grew optimally at 30 °C, pH 7.0 with 0% (w/v) NaCl. Based on phylogenetic analysis, strain A6T clustered within the genus Lysobacter clade and branched with Lysobacter dokdonensis KCTC 12822T (99.5%, 16S rRNA gene sequence similarity) and Lysobacter caseinilyticus KACC 19816T (98.5%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain A6T and Lysobacter dokdonensis KCTC 12822T were 82.7% and 26.2%, and the values for strain A6T and KACC 19816T were 81.4% and 23.8%, respectively. Iso-C16:0, iso-C15:0, summed feature 9 (C17:1 iso ω9c and/or C16:0 10-methyl) and summed feature 3 (C16:1ω7c and/or C16:1 ω6c) were the major fatty acids, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine were the major polar lipids, and ubiquinone 8 (Q-8) was the major ubiquinone. The genomic DNA G+C content was 67.2 mol%. Furthermore, under the condition of 30 °C, pH 7.0, 4% inoculation with 10.0 g L-1 lactose, the ß-galactosidase activity produced by strain A6T was highest, reaching 95.3 U mL-1, indicating that this strain could be applied as a potential strain for ß-galactosidase production. Strain A6T represents a novel species of the genus Lysobacter, and Lysobacter lactosilyticus sp. nov. is proposed on the basis of phenotypic, genotypic, and chemotaxonomic analysis. The type strain is A6T (=KCTC 82184T=CGMCC 1.18582T).


Subject(s)
Lysobacter , Phospholipids , Phospholipids/chemistry , Lysobacter/genetics , Fertilizers/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil , Amino Acids/metabolism , Farms , DNA, Bacterial/genetics , Soil Microbiology , Fatty Acids/chemistry , beta-Galactosidase/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
14.
Int J Biol Macromol ; 223(Pt A): 971-979, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36375662

ABSTRACT

Biomass-based adhesives are considered to be the preferred alternative to formaldehyde-type wood adhesives due to their wide range of sources, low cost, and sustainability. Herein, an environmentally friendly Schiff base cross-linked compact three-dimensional network structure bio-adhesive (DAC-PEI-U) derived from polyethyleneimine (PEI), urea, and cellulose was successfully prepared, verifying by detailed FTIR, NMR, and XPS analysis. Schiff base bridging between aldehyde groups in dialdehyde cellulose (DAC) and amino groups in polyurea (PEIU) not only constructed crosslinking networks but also endowed adhesives with good adhesion property. The dry bond strength of DAC-PEI-U adhesive reached 2.71 MPa, and the wet shear strength was 1.51 MPa (hot water) and 1.34 MPa (boiling water), respectively. It not only improves the water resistance and bonding process, but also displays simple synthesis and low cost. The improved performance of DAC-PEI-U adhesive is attributed to the generation of hyperbranched cross-linking structure in the adhesive system, which results in increased cross-linking density and promotes the formation of dense cross-sections in the curing adhesive. This work paves a solid way for developing cellulose-based wood adhesives with wet bonding properties, thus holding great potential as an alternative to formaldehyde-type adhesives in wood-based panel and indoor panel bonding industries.


Subject(s)
Adhesives , Schiff Bases , Adhesives/chemistry , Cellulose/chemistry , Wood/chemistry , Water/analysis , Polyethyleneimine , Formaldehyde
15.
Genome Biol ; 23(1): 244, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36419179

ABSTRACT

Heat-imposed crop failure is often attributed to reduced thermotolerance of floral tissues; however, the underlying mechanism remains unknown. Here, we demonstrate that m6A RNA methylation increases in Arabidopsis flowers and negatively regulates gene expression variability. Stochastic gene expression provides flexibility to cope with environmental stresses. We find that reduced transcriptional fluctuation is associated with compromised activation of heat-responsive genes. Moreover, disruption of an RNA demethylase AtALKBH10B leads to lower gene expression variability, suppression of heat-activated genes, and strong reduction of plant fertility. Our work proposes a novel role for RNA methylation in the bet-hedging strategy of heat stress response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Arabidopsis/metabolism , Thermotolerance/genetics , Arabidopsis Proteins/metabolism , Methylation , Gene Expression Regulation, Plant , RNA/metabolism , Gene Expression
16.
Cancer Cell Int ; 22(1): 368, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424626

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by poor prognosis, early recurrence, and the lack of durable chemotherapy responses and specific targeted treatments. In this preclinical study, we examines Tiliroside (TS, C30H26O13), as one of the major compounds of Tribulus terrestris L. which has been used as an alternative therapy in clinic practice of breast cancer treatment, for its therapeutic use in TNBC. The association between CAXII expression level and survival probability of TNBC patients, and the difference of CAXII expression level between TNBC and normal samples were evaluated by using publicly accessible databases. To determine the anticancer efficacy of TS on TNBC cells, cell proliferation, wound healing, cell invasion, and 3D spheroid formation assays were performed and excellent anticancer activities of TS were displayed. Mouse models further demonstrated that TS significantly reduced the tumor burden and improved survival rate. The properties of TS as a novel CAXII inhibitor have also been evaluated by CAXII activity assay, pHi, pHe and lactate level assay. Further RT-PCR and Caspase-3 activity analyses also revealed the positive regulating effects of TS on E2F1,3/Caspase-3 axis in TNBC cells cultured in 2D or 3D systems. The findings indicate that TS suppresses TNBC progression as a potential novel CAXII inhibitor in preclinical experiments, which warrants further investigation on its therapeutic implications.

17.
Nanomaterials (Basel) ; 12(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364682

ABSTRACT

Cavity-enhanced electro-optic comb generators (CEEOCGs) can provide optical frequency combs with excellent stability and configurability. The existing methods for CEEOCGs spectrum characterization, however, are based on approximations and have suffered from either iterative calculations or limited applicable conditions. In this paper, we show a spectrum characterization method by accumulating the optical electrical field with respect to the count of the round-trip propagation inside of CEEOCGs. The identity transformation and complete analysis of the intracavity phase delay were conducted to eliminate approximations and be applicable to arbitrary conditions, respectively. The calculation efficiency was improved by the noniterative matrix operations. Setting the maximum propagation count as 1000, the spectrum of the center ±300 comb modes can be characterized with merely the truncation error of floating-point numbers within 1.2 s. More importantly, the effects of all CEEOCG parameters were comprehensively characterized for the first time. Accordingly, not only the exact working condition of CEEOCG can be identified for further optimization, but also the power of each comb mode can be predicted accurately and efficiently for applications in optical communications and waveform synthesis.

18.
Int J Biol Macromol ; 222(Pt B): 2719-2728, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36228817

ABSTRACT

Sustainable biomass resources are favored by researchers on account of their biodegradability and biocompatibility, which is a replacement for non-renewable fossil fuels. The development of low-carbon, green, and high-value bio-based adhesives are the inevitable trend of the industry development. However, the main factors limiting their application are poor water resistance and low bonding performance. Herein, the crosslinking network was constructed based on the reaction between the epoxy groups of trimethylolpropane glycidyl ether (TMPEG) and the amino groups of the synthesized aminated cellulose (AC) to form an interlocking bond. Through the synergy of covalent bond, electrostatic interaction, and hydrogen bond, the bonding strength and water resistance of the proposed adhesive can be effectively improved. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and solid-state nuclear magnetic resonance spectroscopy (13C NMR) demonstrated the formation of epoxy-amine network. The excellent bonding strength and water resistance of the adhesive made with AC and TMPEG (AC-TMPEG) are mainly reflected by the dry lap shear strength of 2.56 MPa and the wet lap shear strength of 1.94/2.09 MPa after soaking in 63 °C/boiling water for 3.0 h. This study reveals an approach for manufacturing wood adhesive with superior bonding performance and exceptional water resistance.


Subject(s)
Adhesives , Wood , Adhesives/chemistry , Wood/chemistry , Cellulose/analysis , Spectroscopy, Fourier Transform Infrared , Epoxy Resins , Water/chemistry , Amines
19.
IEEE Trans Cybern ; PP2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219656

ABSTRACT

Condition monitoring of assets is significant to the efficiency and reliability of industrial automation systems. However, the accuracy of condition monitoring results is easily impaired by variational environments and volatile operations, especially for complex automation systems. In this article, an environmentally adaptive and contrastive representation learning method is proposed to address the problem. To suppress the unexpected effects of environmental variations on operating data, a regression model between the operational and environmental variables is developed. The variable regression adjustment is achieved by solving a penalized optimization problem based on spline functions, and the solution is explicitly derived. Then, negative samples and pseudo labels are generated based on the designed pattern of data augmentation, and valid data representations for asset condition monitoring can be obtained by contrastive learning. Moreover, the reference statue of healthy assets is established by kernel density estimation, and control charts are employed for online monitoring with alarm thresholds. Taking wind turbine blades as examples, the remarkable performance of the developed method is demonstrated with real-world measurements from wind farms. Furthermore, comparative analysis with benchmark approaches and ablation study are conducted to reveal the superiority and effectiveness of the proposed method.

20.
Opt Express ; 30(11): 17870-17885, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221599

ABSTRACT

A novel low-nonlinearity Michelson microprobe fiber interferometer against light intensity disturbance for high-precision embedded displacement measurements is introduced. To analyze the influence of light intensity disturbance on the microprobe and measurement accuracy of the integrated fiber interferometer, an equivalent model of micro-probe sensing with the tilted target is established. The proposed PGC demodulation and nonlinearity correction method with simple principle helps avoid DC component varying with light intensity. The experiments show that residual displacement errors of the micro-probe fiber interferometer are reduced from 4.36 nm to 0.46 nm, thus allowing embedded displacement detection with sub-nanometer accuracy under low frequency light intensity disturbance.

SELECTION OF CITATIONS
SEARCH DETAIL
...