Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 202: 46-61, 2023 06.
Article in English | MEDLINE | ID: mdl-36990300

ABSTRACT

Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.


Subject(s)
Gastritis , NADH, NADPH Oxidoreductases , NF-kappa B , Animals , Humans , Mice , Gastritis/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-33 , Metaplasia , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Reactive Oxygen Species/metabolism , NADH, NADPH Oxidoreductases/genetics
2.
Front Genet ; 12: 695791, 2021.
Article in English | MEDLINE | ID: mdl-34421999

ABSTRACT

Selection for resistance against gray leaf spot (GLS) is a major objective in the lupin breeding programs. A segregation ratio of 1:1 (resistant:susceptible) in F8 recombinant inbred lines (RIL8) derived from a cross between a breeding line 83A:476 (resistant to GLS) and a wild accession P27255 (susceptible to GLS) indicated that GLS was controlled by a single major gene. To develop molecular markers linked to GLS, in the beginning, only 11 resistant lines and six susceptible lines from the 83A:476 and P27255 population were genotyped with MFLP markers, and three MFLP markers were identified to be co-segregated with GLS. This method was very efficient, but the markers were located outside of the gene, and could not be used in other germplasms. Then QTL analysis and fine mapping were conducted to identify the gene. Finally, the gene was narrowed down to a 241-kb region containing two disease resistance genes. To further identify the candidate gene, DNA variants between accessions Tanjil (resistant to GLS) and Unicrop (susceptible to GLS) were analyzed. The results indicated that only one SNP was detected in the 241 kb region. This SNP was located in the TMV resistance protein N-like gene region and also identified between 83A:476 and P27255. Genotyping the Tanjil/Unicrop RIL8 population showed that this SNP co-segregated with GLS resistance. The phylogenetic tree analysis of this gene among 18 lupin accessions indicates that Australian resistant breeding line/varieties were clustered into one group and carry two resistant alleles, while susceptible accessions were clustered into different groups.

3.
Plant J ; 105(5): 1192-1210, 2021 03.
Article in English | MEDLINE | ID: mdl-33249667

ABSTRACT

Shifting from a livestock-based protein diet to a plant-based protein diet has been proposed as an essential requirement to maintain global food sustainability, which requires the increased production of protein-rich crops for direct human consumption. Meanwhile, the lack of sufficient genetic diversity in crop varieties is an increasing concern for sustainable food supplies. Countering this concern requires a clear understanding of the domestication process and dynamics. Narrow-leafed lupin (Lupinus angustifolius L.) has experienced rapid domestication and has become a new legume crop over the past century, with the potential to provide protein-rich seeds. Here, using long-read whole-genome sequencing, we assembled the third-generation reference genome for the narrow-leafed lupin cultivar Tanjil, comprising 20 chromosomes with a total genome size of 615.8 Mb and contig N50 = 5.65 Mb. We characterized the original mutation and putative biological pathway resulting in low seed alkaloid level that initiated the recent domestication of narrow-leafed lupin. We identified a 1133-bp insertion in the cis-regulatory region of a putative gene that may be associated with reduced pod shattering (lentus). A comparative analysis of genomic diversity in cultivars and wild types identified an apparent domestication bottleneck, as precisely predicted by the original model of the bottleneck effect on genetic variability in populations. Our results identify the key domestication genetic loci and provide direct genomic evidence for a domestication bottleneck, and open up the possibility of knowledge-driven de novo domestication of wild plants as an avenue to broaden crop plant diversity to enhance food security and sustainable low-carbon emission agriculture.


Subject(s)
Genome, Plant/genetics , Lupinus/genetics , Plant Leaves/genetics , Genetic Variation/genetics , Mutation/genetics
4.
Cancer Cell Int ; 20: 177, 2020.
Article in English | MEDLINE | ID: mdl-32467671

ABSTRACT

BACKGROUND: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options. METHODS: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells. RESULTS: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle. CONCLUSION: The established 4­mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.

5.
Theor Appl Genet ; 131(1): 209-223, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29051970

ABSTRACT

KEY MESSAGE: An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.


Subject(s)
Consensus Sequence , Genome, Plant , Lupinus/genetics , Genetic Linkage , Genetic Markers , Genotype , Physical Chromosome Mapping , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
6.
Sci Rep ; 7(1): 15335, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127429

ABSTRACT

White lupin (Lupinus albus L.) is a valuable source of seed protein, carbohydrates and oil, but requires genetic improvement to attain its agronomic potential. This study aimed to (i) develop a new high-density consensus linkage map based on new, transcriptome-anchored markers; (ii) map four important agronomic traits, namely, vernalization requirement, seed alkaloid content, and resistance to anthracnose and Phomopsis stem blight; and, (iii) define regions of synteny between the L. albus and narrow-leafed lupin (L. angustifolius L.) genomes. Mapping of white lupin quantitative trait loci (QTLs) revealed polygenic control of vernalization responsiveness and anthracnose resistance, as well as a single locus regulating seed alkaloid content. We found high sequence collinearity between white and narrow-leafed lupin genomes. Interestingly, the white lupin QTLs did not correspond to previously mapped narrow-leafed lupin loci conferring vernalization independence, anthracnose resistance, low alkaloids and Phomopsis stem blight resistance, highlighting different genetic control of these traits. Our suite of allele-sequenced and PCR validated markers tagging these QTLs is immediately applicable for marker-assisted selection in white lupin breeding. The consensus map constitutes a platform for synteny-based gene cloning approaches and can support the forthcoming white lupin genome sequencing efforts.


Subject(s)
Chromosome Mapping , Genetic Linkage , Genome, Plant , Lupinus/genetics , Plant Leaves/genetics , Quantitative Trait Loci , Plant Breeding
7.
BMC Genomics ; 16: 660, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26329386

ABSTRACT

BACKGROUND: Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding. RESULTS: Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding. CONCLUSIONS: We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.


Subject(s)
Disease Resistance/genetics , Genetic Loci , Genome, Plant , Lupinus/genetics , Plant Diseases/genetics , Sequence Analysis, DNA/methods , Australia , Chromosome Mapping , Data Mining , Genes, Plant , Genetic Linkage , Genetic Markers , Genotype , INDEL Mutation/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
8.
Theor Appl Genet ; 128(5): 779-95, 2015 May.
Article in English | MEDLINE | ID: mdl-25821196

ABSTRACT

KEY MESSAGE: Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.


Subject(s)
Breeding , Crops, Agricultural/genetics , Genetic Markers , Sequence Analysis, DNA/methods , DNA, Plant/genetics , Genotyping Techniques/economics , Genotyping Techniques/methods , Quantitative Trait Loci
9.
Methods Mol Biol ; 1069: 179-201, 2013.
Article in English | MEDLINE | ID: mdl-23996316

ABSTRACT

Since the development of molecular markers to tag genes of agronomic traits of interests, molecular markers have played an increasingly significant role in breeding programs. Molecular markers have been implemented for large-scale marker-assisted selection in the breeding program of many important crops including lupin. So far, more than a dozen molecular markers for disease resistance genes and for other agronomic traits of interest have been developed in lupin. The DNA fingerprinting method, "MFLP" has played a pivotal role in the success of lupin breeding program in Australia. Here, we describe the MFLP technique used in lupin breeding which could be easily transferable to other crop species.


Subject(s)
Breeding , Genetic Markers , Lupinus/genetics , DNA Fingerprinting/methods , Genetic Linkage , Genome, Plant
10.
PLoS One ; 8(5): e64799, 2013.
Article in English | MEDLINE | ID: mdl-23734219

ABSTRACT

Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genome, Plant/genetics , Lupinus/genetics , Sequence Analysis, DNA/methods , Arginine/metabolism , Colletotrichum/physiology , Disease Resistance/genetics , Genes, Plant/genetics , Genetic Markers/genetics , Genotype , Host-Pathogen Interactions , Lupinus/microbiology , Metabolic Networks and Pathways/genetics , Methionine/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide
11.
J Plant Res ; 126(3): 395-401, 2013 May.
Article in English | MEDLINE | ID: mdl-23090157

ABSTRACT

Narrow-leafed lupin (Lupinus angustifolius L.) is a valuable legume crop for animal feed and human health food because of its high proteins content. However, the genetics of seed storage proteins is unclear, limiting further improvement of protein quantity and quality. In this study, matrix-assisted laser desorption/ionization time of flight mass spectrometry was used for the first time to analyze lupin seed storage proteins and the spectra generated was treated as markers to investigate the chromosome locations controlling seed storage proteins in the narrow-leafed lupin. In a recombinant inbred line population of 89 individuals, 48 polymorphic protein peaks were identified and seven of which were successfully mapped onto four existing linkage groups: two on NLL-04, three on NLL-05, one on NLL-07 and one on NLL-14, with LOD values ranging from 2.6 to 7.7 confirming a significant linkage. Most protein-based markers showed distorted segregation and were failed to be integrated into the reference map. Among them, 31 were grouped into six clusters and the other ten were totally unlinked. This study provides a significant clue to study the comparative genomics/proteomics among legumes as well as for protein marker-assisted breeding. The distribution pattern of genes controlling seed storage protein revealed in this study probably exists universally among legumes or even all plants and animals. Whether genes controlling seed storage protein share the same gene expression pattern controlling other enzymes and what is the mechanism behind it are the questions which remain to be answered in the future.


Subject(s)
Genetic Linkage , Lupinus/genetics , Polymorphism, Genetic , Seed Storage Proteins/genetics , Seeds/genetics , Biomarkers/metabolism , Lupinus/metabolism , Seed Storage Proteins/metabolism , Seeds/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Theor Appl Genet ; 126(2): 511-22, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23086512

ABSTRACT

Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F(8) recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F(8) population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of "false positives" (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Genes, Plant/genetics , Genetic Markers , High-Throughput Nucleotide Sequencing , Lupinus/genetics , Plant Diseases/genetics , Plant Stems/genetics , Ascomycota/pathogenicity , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genetic Linkage/genetics , Lupinus/immunology , Lupinus/microbiology , Molecular Sequence Data , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Stems/immunology , Plant Stems/microbiology , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci
13.
BMC Genomics ; 13: 318, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22805587

ABSTRACT

BACKGROUND: In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. RESULTS: Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. CONCLUSIONS: We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.


Subject(s)
Colletotrichum/physiology , DNA Shuffling/methods , Disease Resistance/genetics , Lupinus/genetics , Lupinus/microbiology , Plant Diseases/genetics , Sequence Analysis, DNA/methods , Base Sequence , Genes, Plant/genetics , Genetic Association Studies , Genetic Linkage , Genetic Markers , Inbreeding , Plant Diseases/microbiology , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Reproducibility of Results , Restriction Mapping
14.
J Biomed Sci ; 19: 38, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22471589

ABSTRACT

BACKGROUND: Human olfactomedin 4 (OLFM4) gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance. METHODS: OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2) or tumor necrosis factor-alpha (TNF α) were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk. RESULTS: The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P < 0.01). OLFM4 knockdown did not trigger obvious cell apoptosis but increased H2O2 or TNF α-induced apoptosis and caspase-3 activity (all P < 0.01). Treatment of Z-VAD-fmk attenuated caspase-3 activity and significantly reversed the H(2)O(2) or TNF α-induced apoptosis in OLFM4 knockdown cells (all P < 0.01). CONCLUSION: Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.


Subject(s)
Apoptosis/drug effects , Granulocyte Colony-Stimulating Factor/metabolism , Hydrogen Peroxide/pharmacology , Oxidants/pharmacology , Stomach Neoplasms/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/genetics , Caspase Inhibitors , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cysteine Proteinase Inhibitors/pharmacology , G1 Phase/drug effects , G1 Phase/genetics , Gene Deletion , Granulocyte Colony-Stimulating Factor/genetics , Humans , RNA Interference , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
15.
Oncol Res ; 19(12): 535-41, 2011.
Article in English | MEDLINE | ID: mdl-22812186

ABSTRACT

Urinary bladder cancer accounts for approximately 3% of all cancers in humans. Treatment for urinary bladder is not satisfactory. The present study aims to elucidate the effect of gene silencing of survivin on the inhibition of bladder cancer cells. In this study, we constructed survivin shRNA-carrying lentiviral vectors. Bladder cancer cell lines, T24 cells and BJ cells, were transduced with the constructed shRNA of survivin. The frequency of apoptotic bladder cancer cells was assessed by flow cytometry. The results showed that transfection with survivin shRNA significantly inhibited cell proliferation of both T24 and BJ cells. Most T24 and BJ cells accumulated at the G2/M stage; a portion of them was at sub-G1 stage. An increase in the fraction of bladder cancer cells undergoing apoptosis was noted. Among eight apoptosis-associated proteins, the amounts of BAX and BAD were significantly increased in the survivin-deficient bladder cancer cells. The findings suggest that survivin may be a therapeutic target of bladder cancer to selectively inhibit cell proliferation of bladder cancer cells.


Subject(s)
Apoptosis , Cell Cycle , Cell Proliferation , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , RNA, Small Interfering/genetics , Urinary Bladder Neoplasms/prevention & control , Blotting, Western , Down-Regulation , Flow Cytometry , Gene Silencing , Genetic Vectors , Humans , Inhibitor of Apoptosis Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Survivin , Tumor Cells, Cultured , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
16.
Exp Cell Res ; 316(13): 2061-70, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20478305

ABSTRACT

Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), as a novel IFN-beta/RA-inducible gene product, was identified as a potential tumor suppressor associated with growth inhibition and cell apoptosis. Recently, it has been reported that the apoptotic effects and apoptosis-related gene induction of GRIM-19 can be attenuated by GW112, indicating that GRIM-19 and GW112 are involved in a common signal transduction pathway. To investigate the signaling mechanisms that link GRIM-19 to GW112 and their functional role in tumor cell invasion and metastasis, we utilized adenovirus-mediated overexpression of GRIM-19 in the gastric cancer SGC-7901 cell line. We observed that enhanced expression of GRIM-19 not only downregulated GW112 but also decreased NF-small ka, CyrillicB binding activity. As a result, we found that tumor cell adhesion, migration, invasion and liver metastasis were inhibited. Additionally, upregulation of GRIM-19 also suppressed secretion of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase (MMP)-2, 9 and vascular endothelial growth factor (VEGF). These results indicate that GRIM-19 acts as an upstream regulator of GW112 to block NF-small ka, CyrillicB binding activity, thereby inhibiting gastric cancer cell migration, invasion and metastasis. We conclude that adenoviral transfer of the GRIM-19 gene may be an efficacious approach to controlling the invasion and metastasis of human gastric cancer.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Gene Expression Regulation/physiology , Liver Neoplasms/prevention & control , NADH, NADPH Oxidoreductases/genetics , Stomach Neoplasms/prevention & control , Animals , Blotting, Western , Cell Adhesion , Cell Line, Tumor , Cell Movement , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunoenzyme Techniques , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
17.
Article in English | MEDLINE | ID: mdl-20460110

ABSTRACT

This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

18.
Genet. mol. biol ; 30(3): 623-629, 2007. ilus, tab
Article in English | LILACS | ID: lil-460081

ABSTRACT

Wild types of narrow-leaf lupin (Lupinus angustifolius L.) have seed pods that shatter upon maturity, leading to the loss of their seeds before or during the harvest process. Two recessive genes have been incorporated into domesticated cultivars of this species to maximize harvest-ability of the produce. One of these genes is called lentus (le). Two microsatellite - anchored fragment length polymorphism (MFLP) candidate markers were identified as closely linked to the le gene in a recombinant inbred line (RIL) population derived from a domesticated x wild type cross. The candidate MFLP markers were isolated from the gel, re-amplified by PCR, cloned and sequenced. The MFLP polymorphisms were converted into sequence-specific PCR-based markers. Linkage analysis by MapManager indicated that one of the markers, LeM1, was 2.6 centiMorgans (cM) and the other, LeM2, was 1.3 cM from the gene, with both being on the same side. The correlation between the marker genotype and the plant phenotype for the le gene is 95 percent for the Australian cultivars, and approximately 36 percent on wild types tested. These markers may be useful in marker assisted selection for the le gene when introgressing wild material into lupin breeding programs.

19.
Cell Mol Biol Lett ; 10(2): 331-44, 2005.
Article in English | MEDLINE | ID: mdl-16010297

ABSTRACT

A mapping population of F(8)derived recombinant inbred lines (RILs) was established from a cross between a domesticated breeding line 83A:476 and a wild type P27255 in narrow-leaf lupin (Lupinus angustifolius L.). The parents together with the 89 RILs were subjected to DNA fingerprinting using microsatellite-anchored fragment length polymorphism (MFLP) to rapidly generate DNA markers to construct a linkage map. Five hundred and twenty two unique markers of which 21% were co-dominant, were generated and mapped. Phenotypic data for the domestication traits: mollis (soft seeds), leucospermus (white flower and seed colour); Lentus (reduced pod-shattering), iucundis (low alkaloid), Ku (early flowering) and moustache pattern on seed coats; were included. Three to 7 molecular markers were identified within 5 cM of each of these domestication genes. The anthracnose resistance gene Lanr1 was also mapped. Linkage groups were constructed using MapManager version QTXb20, resulting in 21 linkage groups consisting of 7 or more markers. The total map length was 1543 cM, with an average distance of 3.4 cM between adjacent markers. This is the first published map for a lupin species. The map can be exploited for marker assisted selection for genetic improvement in lupin breeding programs.


Subject(s)
Chromosome Mapping , Crops, Agricultural/genetics , Genetic Linkage , Lupinus/genetics , Plant Leaves/anatomy & histology , Polymorphism, Genetic , Colletotrichum/pathogenicity , Drug Resistance , Genetic Markers/genetics , Genome, Plant , Lod Score , Lupinus/anatomy & histology , Phenotype , Plant Leaves/genetics
20.
Cell Mol Biol Lett ; 10(1): 123-34, 2005.
Article in English | MEDLINE | ID: mdl-15809684

ABSTRACT

Selection for anthracnose disease resistance is one of the major objectives in lupin breeding programs. The aim of this study was to develop a molecular marker linked to a gene conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.), which can be widely used for MAS in lupin breeding. A F(8)derived RIL population from a cross between cultivar Tanjil (resistant to anthracnose) and Unicrop (susceptible) was used for marker development. DNA fingerprinting was conducted on 12 representative plants by combining the AFLP method with primers designed based on conserved sequences of plant disease resistance genes. A co-dominant candidate marker was detected from a DNA fingerprint. The candidate marker was cloned, sequenced, and converted into a sequence-specific, simple PCR based marker. Linkage analysis based on a segregating population consisting of 184 RILs suggested that the marker, designated as AntjM2, is located 2.3 cM away from the R gene conferring anthracnose resistance in L. angustifolius. The marker has now being implemented for MAS in the Australian national lupin breeding program.


Subject(s)
Colletotrichum/pathogenicity , Immunity, Innate/genetics , Lupinus/genetics , Base Sequence , DNA Fingerprinting , Genetic Linkage , Genetic Markers , Lupinus/microbiology , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...