Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Int J Gen Med ; 17: 1557-1569, 2024.
Article in English | MEDLINE | ID: mdl-38680192

ABSTRACT

Purpose: To investigate the clinical application value of diagonal earlobe crease (DELC) in patients with chest pain for the diagnosis of coronary heart disease (CHD) and to construct a risk model by multivariate logistic regression. Patients and Methods: Our trial enrolled prospectively and consecutively 706 chest pain patients with suspected CHD between January 2021 to June 2023 from Chengde Central Hospital. According to coronary angiography results, they were categorized into the CHD (n=457) and non-CHD groups (n=249). Results: The trial demonstrated a significant positive relationship between DELC and CHD. Independent risk factors were sex, age, hypertension, diabetes mellitus, LP (a), Cys C, and DELC, whilst HDL-C was a protective factor, for CHD. Patients with-DELC were older than those in the without-DELC arm (P<0.001) and had a higher proportion of males than females (61.6% vs 50.0%, P=0.026). After multifactorial correction, independent risk factors for CHD included DELC (OR=1.660, 95% CI:1.153 to 2.388, P=0.006), age (OR=1.024, 95% CI:1.002 to 1.045, P=0.030), gender (OR=1.702, 95% CI:1.141 to 2.539, P=0.009), hypertension (OR=1.744, 95% CI:1.226 to 2.482, P=0.002), diabetes mellitus (OR=2.113, 95% CI:1.404 to 3.179, P<0.001), LP(a) (OR=1.010, 95% CI:1.003 to 1.017, P=0.005), Cys C (OR=3.549, 95% CI:1.605 to 7.846, P=0.002). The Hosmer and Lemeshow (H-L) test (P=0.818) suggests a high goodness of fit, and the area under the ROC curve was calculated to be 0.721 (95% CI:0.682 to 0.760, P<0.001), which demonstrates that the model has a superior diagnostic value for CHD. Conclusion: DELC is an independent risk factor for CHD after adjusting for sex, age, hypertension, diabetes mellitus, smoking index, LP (a), Cys C, and HDL-C. Our model can be used clinically for assessing the risk of CHD.

2.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456501

ABSTRACT

Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Phagocytosis , Mice , Animals , Efferocytosis , Apoptosis , Macrophages/metabolism , Inflammation/metabolism , Membrane Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Reperfusion
5.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193350

ABSTRACT

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Subject(s)
Acute Lung Injury , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/drug therapy , Alveolar Epithelial Cells/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Calcitonin Gene-Related Peptide/genetics , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Cell Line , GTP Phosphohydrolases/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lung/metabolism , Mice, Inbred C57BL , Necroptosis , Signal Transduction
6.
Lab Invest ; 104(3): 100319, 2024 03.
Article in English | MEDLINE | ID: mdl-38158123

ABSTRACT

Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1ß into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.


Subject(s)
Macrophage Activation , Pulmonary Disease, Chronic Obstructive , Mice , Humans , Animals , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Inflammasomes/metabolism
7.
Lab Invest ; 104(2): 100307, 2024 02.
Article in English | MEDLINE | ID: mdl-38104865

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Subject(s)
Mitochondria , Pulmonary Disease, Chronic Obstructive , Humans , Mitochondria/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aging , Mitophagy
8.
Biomed Pharmacother ; 169: 115937, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38007934

ABSTRACT

Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored. In the present study, we observed that bleomycin (BLM) induced enhanced mitophagy accompanied by increased mitochondrial ROS (mito-ROS) content in the murine alveolar epithelial cell line MLE12. While EETs reduced BLM-induced mitophagy and mito-ROS content in MLE12 cells, and the mechanism was related to the regulation of NOX4/Nrf2-mediated redox imbalance. Furthermore, we found that inhibition of EETs degradation could significantly inhibit mitophagy and regulate NOX4/Nrf2 balance to exert anti-oxidant effects in D-galactose-induced premature aging mice. Collectively, these findings may provide new ideas for treating age-related pulmonary diseases by targeting EETs to improve mitochondrial dysfunction and reduce oxidative stress.


Subject(s)
Alveolar Epithelial Cells , Lung Diseases , Mice , Animals , Alveolar Epithelial Cells/metabolism , Mitophagy , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cellular Senescence
9.
Nano Lett ; 23(19): 8881-8890, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751402

ABSTRACT

Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.

10.
Heliyon ; 9(6): e17361, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37416635

ABSTRACT

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of pulmonary fibrosis (PF). However, the exact mechanism underlying AEC senescence during PF remains poorly understood. Here, we reported an unrecognized mechanism for AEC senescence during PF. We found that, in bleomycin (BLM)-induced PF mice, the expressions of isocitrate dehydrogenase 3α (Idh3α) and citrate carrier (CIC) were significantly down-regulated in the lungs, which could result in mitochondria citrate (citratemt) accumulation in our previous study. Notably, the down-regulation of Idh3α and CIC was related to senescence. The mice with AECs-specific Idh3α and CIC deficiency by adenoviral vector exhibited spontaneous PF and senescence in the lungs. In vitro, co-inhibition of Idh3α and CIC with shRNA or inhibitors triggered the senescence of AECs, indicating that accumulated citratemt triggers AEC senescence. Mechanistically, citratemt accumulation impaired the mitochondrial biogenesis of AECs. In addition, the senescence-associated secretory phenotype from senescent AECs induced by citratemt accumulation activated the proliferation and transdifferentiation of NIH3T3 fibroblasts into myofibroblasts. In conclusion, we show that citratemt accumulation would be a novel target for protection against PF that involves senescence.

11.
Cardiovasc Res ; 119(10): 1981-1996, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37392461

ABSTRACT

AIMS: Systemic inflammation occurs commonly during many human disease settings and increases vascular permeability, leading to organ failure, and lethal outcomes. Lipocalin 10 (Lcn10), a poorly characterized member of the lipocalin family, is remarkably altered in the cardiovascular system of human patients with inflammatory conditions. Nonetheless, whether Lcn10 regulates inflammation-induced endothelial permeability remains unknown. METHODS AND RESULTS: Systemic inflammation models were induced using mice by injection of endotoxin lipopolysaccharide (LPS) or caecal ligation and puncture (CLP) surgery. We observed that the expression of Lcn10 was dynamically altered only in endothelial cells (ECs), but not in either fibroblasts or cardiomyocytes isolated from mouse hearts following the LPS challenge or CLP surgery. Using in vitro gain- and loss-of-function approaches and an in vivo global knockout mouse model, we discovered that Lcn10 negatively regulated endothelial permeability upon inflammatory stimuli. Loss of Lcn10 augmented vascular leakage, leading to severe organ damage and higher mortality following LPS challenge, compared to wild-type controls. By contrast, overexpression of Lcn10 in ECs displayed opposite effects. A mechanistic analysis revealed that both endogenous and exogenous elevation of Lcn10 in ECs could activate slingshot homologue 1 (Ssh1)-Cofilin signalling cascade, a key axis known to control actin filament dynamics. Accordingly, a reduced formation of stress fibre and increased generation of cortical actin band were exhibited in Lcn10-ECs, when compared to controls upon endotoxin insults. Furthermore, we identified that Lcn10 interacted with LDL receptor-related protein 2 (LRP2) in ECs, which acted as an upstream factor of the Ssh1-Confilin signalling. Finally, injection of recombinant Lcn10 protein into endotoxic mice showed therapeutic effects against inflammation-induced vascular leakage. CONCLUSION: This study identifies Lcn10 as a novel regulator of EC function and illustrates a new link in the Lcn10-LRP2-Ssh1 axis to controlling endothelial barrier integrity. Our findings may provide novel strategies for the treatment of inflammation-related diseases.


Subject(s)
Endothelial Cells , Lipopolysaccharides , Humans , Animals , Mice , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Signal Transduction , Inflammation/prevention & control , Inflammation/metabolism , Mice, Knockout , Receptors, LDL/metabolism
12.
Pest Manag Sci ; 79(10): 3993-3998, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37269066

ABSTRACT

BACKGROUND: The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS: In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION: These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.


Subject(s)
Sex Attractants , Animals , Female , Spodoptera/physiology , Sex Attractants/pharmacology , Sex Attractants/metabolism , RNA Interference , Communication , Insect Proteins/metabolism
13.
Redox Biol ; 63: 102765, 2023 07.
Article in English | MEDLINE | ID: mdl-37269686

ABSTRACT

Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence. In vitro, we found that 14,15-EET content was significantly decreased in senescent AECs. Exogenous EETs supplementation, overexpression of CYP2J2, or inhibition of EETs degrading enzyme soluble epoxide hydrolase (sEH) to increase EETs alleviated AECs' senescence. Mechanistically, 14,15-EET promoted the expression of Trim25 to ubiquitinate and degrade Keap1 and promoted Nrf2 to enter the nucleus to exert an anti-oxidant effect, thereby inhibiting endoplasmic reticulum stress (ERS) and alleviating AEC senescence. Furthermore, in D-galactose (D-gal)-induced premature aging mouse model, inhibiting the degradation of EETs by Trifluoromethoxyphenyl propionylpiperidin urea (TPPU, an inhibitor of sEH) significantly inhibited the protein expression of p16, p21, and γH2AX. Meanwhile, TPPU reduced the degree of age-related pulmonary fibrosis in mice. Our study has confirmed that EETs are novel anti-senescence substances for AECs, providing new targets for the treatment of chronic lung diseases.


Subject(s)
Alveolar Epithelial Cells , Cellular Senescence , Eicosanoids , Endoplasmic Reticulum Stress , NF-E2-Related Factor 2 , Animals , Mice , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/physiology , Eicosanoids/pharmacology , Endoplasmic Reticulum Stress/drug effects , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , Pulmonary Fibrosis , Cellular Senescence/drug effects
14.
Quant Imaging Med Surg ; 13(5): 3266-3278, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37179940

ABSTRACT

Background: To investigate the deformity and asymmetry of the shoulder and pelvis in adolescent idiopathic scoliosis (AIS) patients. Methods: This retrospective cross-sectional study enrolled 223 AIS patients with a right thoracic curve or left thoracolumbar/lumbar curve who underwent spine radiographs at the Third Hospital of Hebei Medical University between November 2020 and December 2021. The following parameters were measured: Cobb angle, clavicular angle, glenoid obliquity angle, acromioclavicular joint deviation, femoral neck-shaft projection angle, iliac obliquity angle, acetabular obliquity angle, coronal trunk deviation distance, and spinal deformity deviation distance. The Mann-Whitney U test, Kruskal-Wallis H test were used for inter-group comparisons, and Wilcoxon signed-rank test were used for intra-group left and right sides comparisons. Results: Shoulder and pelvic imbalances were found in 134 and 120 patients, respectively, and there were 87, 109, and 27 cases of mild, moderate, and severe scoliosis, respectively. Compared with mild scoliosis patients, the difference in the acromioclavicular joint offset on bilateral sides was significantly increased in moderate and severe scoliosis [11.04, 95% confidence interval (CI): 0.09-0.14 for mild, 0.13-0.17 for moderate, and 0.15-0.27 for severe scoliosis, P=0.004], and the difference in the femoral neck-shaft projection angle on bilateral sides was significantly enhanced with scoliosis aggravation (14.14, 95% CI: 2.34-3.41 for mild, 3.00-3.94 for moderate, and 3.57-6.43 for severe scoliosis, P=0.001). The acromioclavicular joint offset was significantly larger on the left than that on the right in patients with a thoracic curve or double curves (thoracic curve -2.75, 95% CI: 0.57-0.69 for the left and 0.50-0.63 for the right, P=0.006; double curve -3.27, 95% CI: 0.60-0.77 for the left and 0.48-0.65 for the right, P=0.001). The femoral neck-shaft projection angle was significantly larger on the left than right in patients with a thoracic curve (-4.46, 95% CI: 133.78-136.20 for the left and 131.62-134.01 for the right, P<0.001), but larger on the right than left in patients with thoracolumbar/lumbar curve (thoracolumbar -2.98, 95% CI: 133.75-136.70 for the left and 135.13-137.82 for the right, P=0.003; lumbar -3.24, 131.97-134.56 for the left and 133.76-136.26 for the right, P=0.001). Conclusions: In AIS patients, shoulder imbalance has a greater impact on coronal balance and spinal scoliosis above the lumbar segment, whereas pelvic imbalance has a greater impact on sagittal balance and spinal scoliosis below the thoracic segment.

15.
J Transl Med ; 21(1): 179, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36879273

ABSTRACT

BACKGROUND: Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages. The influence of TREM-1 on the destiny of macrophages in ALI requires further investigation. METHODS: TREM-1 decoy receptor LR12 was used to evaluate whether the TREM-1 activation induced necroptosis of macrophages in lipopolysaccharide (LPS)-induced ALI in mice. Then we used an agonist anti-TREM-1 Ab (Mab1187) to activate TREM-1 in vitro. Macrophages were treated with GSK872 (a RIPK3 inhibitor), Mdivi-1 (a DRP1 inhibitor), or Rapamycin (an mTOR inhibitor) to investigate whether TREM-1 could induce necroptosis in macrophages, and the mechanism of this process. RESULTS: We first observed that the blockade of TREM-1 attenuated alveolar macrophage (AlvMs) necroptosis in mice with LPS-induced ALI. In vitro, TREM-1 activation induced necroptosis of macrophages. mTOR has been previously linked to macrophage polarization and migration. We discovered that mTOR had a previously unrecognized function in modulating TREM-1-mediated mitochondrial fission, mitophagy, and necroptosis. Moreover, TREM-1 activation promoted DRP1Ser616 phosphorylation through mTOR signaling, which in turn caused surplus mitochondrial fission-mediated necroptosis of macrophages, consequently exacerbating ALI. CONCLUSION: In this study, we reported that TREM-1 acted as a necroptotic stimulus of AlvMs, fueling inflammation and aggravating ALI. We also provided compelling evidence suggesting that mTOR-dependent mitochondrial fission is the underpinning of TREM-1-triggered necroptosis and inflammation. Therefore, regulation of necroptosis by targeting TREM-1 may provide a new therapeutic target for ALI in the future.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Triggering Receptor Expressed on Myeloid Cells-1 , Lipopolysaccharides/pharmacology , Mitochondrial Dynamics , Necroptosis , TOR Serine-Threonine Kinases , Macrophages , Inflammation
16.
Pharmacol Ther ; 244: 108385, 2023 04.
Article in English | MEDLINE | ID: mdl-36966973

ABSTRACT

The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel ß-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.


Subject(s)
Cardiovascular Diseases , Humans , Lipocalins/chemistry , Lipocalins/metabolism , Amino Acid Sequence , Receptors, Cell Surface/metabolism , Ligands , Retinol-Binding Proteins, Plasma/metabolism
17.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963930

ABSTRACT

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Subject(s)
Moths , Sex Attractants , Animals , Female , Male , Sex Attractants/metabolism , Spodoptera/genetics , Spodoptera/metabolism , Odorants , Molecular Docking Simulation , Insect Proteins/metabolism , Moths/metabolism , Pheromones/metabolism
18.
Curr Med Imaging ; 2023 02 02.
Article in English | MEDLINE | ID: mdl-36733202

ABSTRACT

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

19.
Int J Biol Sci ; 19(1): 242-257, 2023.
Article in English | MEDLINE | ID: mdl-36594089

ABSTRACT

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.


Subject(s)
Acute Lung Injury , Inflammasomes , Animals , Mice , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred NOD , Macrophages/metabolism , TOR Serine-Threonine Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Glycolysis , Lipopolysaccharides , Mice, Inbred C57BL , Mammals/metabolism
20.
Int Immunopharmacol ; 116: 109747, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706592

ABSTRACT

Intestinal damage has long been viewed as the primary cause of sepsis-induced multiple organ dysfunction syndrome (MODS). Previous studies have demonstrated that calcitonin gene-related peptide (CGRP) exhibits anti-inflammatory and protective effects in mice exposed to endotoxin. This study investigated whether CGRP protects against sepsis-induced intestinal damage and its underlying mechanisms. Using a murine caecal ligation and puncture (CLP) model, we observed elevated serum and intestinal CGRP levels in septic mice. CGRP knockout (KO) mice showed more severe intestinal barrier damage, excessive NLRP3 inflammasome activation and higher levels of inflammation. In vitro, we used lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to activate the NLRP3 inflammasome in MODE-K murine intestinal epithelial cells. CGRP inhibited NF-κB pathway activation; prevented ASC assembly and ROS accumulation; significantly decreased NLRP3, Caspase-1 p10, and IL-1ß levels and LDH release; and increased cell viability. Treatment with an IL-1ß inhibitor or CGRP suppressed p38 MAPK and ERK1/2 pathway activation and increased ZO-1 and Occludin protein levels in LPS+ATP-treated MODE-K cells. Finally, we used the CGRP upstream agonist drug rutaecarpine (RUT) to control endogenous CGRP release in mice, and this drug demonstrated good therapeutic effects on septic intestinal injury. In conclusion, our results suggest that CGRP ameliorates sepsis-induced intestinal damage, providing valuable insights for drug development.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Calcitonin Gene-Related Peptide/therapeutic use , Lipopolysaccharides/pharmacology , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...