Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2405989, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38943573

ABSTRACT

Cost-effectiveness plays a decisive role in sustainable operating of rechargeable batteries. As such, the low cost-consumption of sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) provides a promising direction for "how do SIBs/PIBs replace Li-ion batteries (LIBs) counterparts" based on their resource abundance and advanced electrochemical performance. To rationalize the SIBs/PIBs technologies as alternatives to LIBs from the unit energy cost perspective, this review gives the specific criteria for their energy density at possible electrode-price grades and various battery-longevity levels. The cost ($ kWh-1 cycle-1) advantage of SIBs/PIBs is ascertained by the cheap raw-material compensation for the cycle performance deficiency and the energy density gap with LIBs. Furthermore, the cost comparison between SIBs and PIBs, especially on cost per kWh and per cycle, is also involved. This review explicitly manifests the practicability and cost-effectiveness toward SIBs are superior to PIBs whose commercialization has so far been hindered by low energy density. Even so, the huge potential on sustainability of PIBs, to outperform SIBs, as the mainstream energy storage technology is revealed as long as PIBs achieve long cycle life or enhanced energy density, the related outlook of which is proceeded as the next development directions for commercial applications.

2.
Adv Mater ; 36(24): e2401008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38446734

ABSTRACT

Quasi-solid-state potassium-ion batteries (SSPIBs) are of great potential for commercial use due to the abundant reserves and cost-effectiveness of resources, as well as high safety. Gel polymer electrolytes (GPEs) with high ionic conductivity and fast interfacial charge transport are necessary for SSPIBs. Here, the weak electrostatic force between K+ and electronegative functional groups in the ethoxylated trimethylolpropane triacrylate (ETPTA) polymer chains, which can promote fast migration of free K+, is revealed. To further enhance the interfacial reaction kinetics, a multilayered GPE by in situ growth of poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) on ETPTA (PVDF-HFP|ETPTA|PVDF-HFP) is constructed to improve the interface contact and provide sufficient K+ concentration in PVDF-HFP. A high ion transference number (0.92) and a superior ionic conductivity (5.15 × 10-3 S cm-1) are achieved. Consequently, the SSPIBs with both intercalation-type (PB) and conversion-type (PTCDA) cathodes show the best battery performance among all reported SSPIBs of the same cathode. These findings demonstrate that potassium-ion batteries have the potential to surpass Li/Na ion batteries in solid-state systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...