Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 19(4): 2154-2157, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30486959

ABSTRACT

The optical properties of zirconia photopolymer suspension for DLP (Digital Light Processing) were evaluated. The light source and intensity were set to 395 nm and 30 mW/cm². Experimental groups were divided into 48, 50, 52, 54, 56 and 58 vol% according to the zirconia volume fraction. The cure depth of all groups was at least 47.35 um when cured for 1 sec, which was higher than layer parameter values of the 3D printer. The geometrical overgrowth showed 28.55% at 48 vol% and 36.94% at 58 vol%. As the volume fraction of zirconia increased, the geometrical overgrowth increased and the cure depth reduced.

2.
J Nanosci Nanotechnol ; 19(2): 1035-1037, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30360195

ABSTRACT

The aim of this study was to evaluate the antibacterial activity against Streptococcus mutans and fibroblast viability of zirconia coated with glass ceramic powder containing Ag and F nanoparticles. Specimens were divided into eight groups depending on the glass ceramic powders: 5, 10, 15, 20 wt% of NaF and Ag, respectively. Adhesion of Streptococcus mutans on glass-coated zirconia surface was evaluated by antimicrobial test. Fibroblast viability was examined by WST-8 assay. In result, the bacterial activity was reduced by 11.8%, 15.4% in Ag 10 wt% and 20 wt% groups. When 5~15 wt% of NaF was added, bacterial counts decreased to 4.2~65.4%, and when 20 wt% of NaF was added, the number of bacteria increased by 29.4%. Regardless of Ag and NaF content, all zirconia specimens showed cell viability above 70%. Within the limitations of this study, zirconia coated with glass ceramics powder containing Ag and NaF was found to reduce the adhesion of Streptococcus mutans but had no influence on osteoblast activation.


Subject(s)
Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Cell Survival , Ceramics/pharmacology , Fibroblasts , Materials Testing , Silver/pharmacology , Surface Properties , Zirconium/pharmacology
3.
Steroids ; 116: 45-51, 2016 12.
Article in English | MEDLINE | ID: mdl-27770617

ABSTRACT

A series of methotrexate-diosgenin conjugates was designed and synthesized to enhance the passive internalization of methotrexate (MTX) into transport-resistant cells. The inhibitory effects of these conjugates on dihydrofolate reductase (DHFR), and their anti-proliferation behaviors against a transport-resistant breast cancer cell line, MDA-MB-231, were investigated. All of the synthesized conjugates retained an ability to inhibit DHFR after the diosgenin substitution. The MTX conjugates were much more potent against methotrexate-resistant MDA-MB-231 cells than MTX. Conjugate 18, containing a disulfide bond, exhibited the most potent anti-proliferative and DHFR inhibitory effects (IC50=4.1µM and 17.21nM, respectively). Anti-proliferative activity was higher in the conjugate with a longer space linker (conjugate 21) than those with shorter linkers (conjugates 19 and 20). These results suggest that diosgenin conjugation of MTX may be an effective way to overcome its transport resistance in cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Diosgenin/chemistry , Methotrexate/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...