Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 34(2): 407-414, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38247220

ABSTRACT

Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.


Subject(s)
Synechocystis , Wastewater , Synechocystis/genetics , Synechocystis/metabolism , Polyphosphates/metabolism , Phosphorus/metabolism , Bioreactors , Culture Media/metabolism
2.
Rev Sci Instrum ; 87(2): 023704, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931857

ABSTRACT

We constructed a (3)He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the x-y-z direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi2B2C) at T = 500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization.

SELECTION OF CITATIONS
SEARCH DETAIL
...