Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 338: 122197, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763711

ABSTRACT

Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.


Subject(s)
Administration, Cutaneous , Carboxymethylcellulose Sodium , Hydrogels , Nanoparticles , Skin , Tetrahydronaphthalenes , Thiophenes , Thiophenes/chemistry , Thiophenes/administration & dosage , Animals , Hydrogels/chemistry , Nanoparticles/chemistry , Carboxymethylcellulose Sodium/chemistry , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/administration & dosage , Skin/drug effects , Skin/metabolism , Male , Skin Absorption/drug effects , Rats , Mice , Drug Carriers/chemistry , Rats, Sprague-Dawley , Drug Liberation
2.
Pharmaceutics ; 16(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399233

ABSTRACT

A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.

3.
Pharm Dev Technol ; 29(1): 62-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190194

ABSTRACT

Herein, we aimed to formulate a novel oral disintegrating tablet (ODT) of aripiprazole (ARP) capable of rapid disintegration using a direct compression technique. Different ODTs were fabricated with directly compressible excipients, and their disintegration time, wettability (water absorption ratio and wetting time), and mechanical properties (hardness and friability) were evaluated. The optimized ODT comprised F-Melt® type C, Prosolv® SMCC HD90, and Na croscarmellose (10 mg of ARP in a 130 mg tablet). The ODT with 3.1-5.2 kp hardness exhibited rapid disintegration (14.1-17.2 sec), along with appropriate mechanical strength (friability < 0.24%). In a bioequivalent study in Korean healthy subjects (randomized, single-dose, two-period crossover design, n = 37), the novel ODT offered the equivalent pharmacokinetic profile to that of a conventional immediate release tablet (Otsuka, Abilify®, Japan), despite different disintegration and dissolution profiles. The 90% confidence intervals of the geometric mean test to reference ratios considering the area-under-the-curve and maximum plasma drug concentrations were 1.0306-11051 and 0.9448-1.1063, respectively, satisfying FDA regulatory criteria for bioequivalence. The novel ART ODT was physicochemically stable under the accelerated storage condition (40 °C, RH75%) for 24 weeks. Therefore, the novel ARP-loaded ODT is expected to be an alternative to oral ARP therapy, providing improved patient adherence.


Subject(s)
Aripiprazole , Humans , Administration, Oral , Solubility , Tablets/chemistry , Therapeutic Equivalency , Cross-Over Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...