Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122753, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37119613

ABSTRACT

Two-dimensional correlation spectroscopy (2D-COS) and perturbation-correlation moving window two-dimensional correlation spectroscopy (PCMW2D) analysis are performed on the temperature-dependent Raman spectra of hexagonal LuMnO3 single crystal. Under the resonance with the on-site Mn d-d transitions, the correlation between the phonons which are relate to the vibration of Mn ions' bonds and spin-excitation peaks suggest a strong spin-phonon coupling in LuMnO3. The PCMW2D results clearly show that the significant change in phonons and spin-excitation peaks occurs around the Néel temperature and the spin reorientation transition. The multiple components in the broad spin-excitation peaks also suggest variations in spin symmetries in the ground state. Furthermore, we propose that the 2D-COS and PCMW2D Raman correlation spectroscopies provide a simple and powerful method for investigating the couplings and the transitions, which would be very important for understanding systematically the magnetoelectric properties of multiferroic materials.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122700, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37060656

ABSTRACT

Nanostructured antiferromagnetic (AFM) NiO has attracted much attention from both the fundamental and applied perspectives. Understanding the two-magnon (2 M) is of great significance in NiO applications such as spin valves and next-generation magnetic random access memories (MRAM). We investigated the phonon modes and antiferromagnetically ordered states of NiO nanoparticles prepared by empirically controlled measurements. An intensity enhancement of the 2 M mode was observed by Raman spectroscopy as the NiO nanoparticles were vacuum annealed at 650 ℃. The increased 2 M peak intensity in NiO nanoparticles is explained by the local symmetry conversions from NiO5 to NiO6 configurations due to the oxygen redistribution during the vacuum annealing. The change of the splitting of anisotropic transverse optical (TO) phonon with different oxygen contents was also revealed by the Raman spectroscopy. We have shown that the changes in the oxygen environment underlie both the change in the 2 M intensity and the splitting of TO phonon in the NiO nanoparticles. Our work offers an efficient avenue to strengthen the AFM ordering and emphasizes the effect of vacuum annealing of the NiO nanoparticles, opening the interesting possibility of individual parameter control in practical applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121498, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35724591

ABSTRACT

We report two-dimensional correlation spectroscopy (2D-COS) analyses of the Raman spectra of NiO nanoparticles over a temperature range from 100 to 300 K. 2D-Raman correlation spectra suggest strong correlation of the phonon spectral intensity variation with the magnetic ordering in NiO nanoparticles. It is revealed that the antiferromagnetic ordering affects the TO phonon anisotropy in NiO nanoparticles. We elucidate the complex spectral features of two-magnon (2 M) bands by performing appropriate 2D-COS model simulations. Significant spin-phonon coupling in NiO nanoparticles is supported by our results. High energy magnon-magnon interaction tails are also found to be involved in the spin-phonon coupling. 2D-COS analyses provide rich information regarding the nature of the phonon and magnon excitations of NiO nanoparticles.

4.
Sci Rep ; 12(1): 2424, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35165348

ABSTRACT

Optical control of the spin degree of freedom is often desired in application of the spin technology. Here we report spin-rotational excitations observed through inelastic light scattering of the hexagonal LuMnO3 in the antiferromagnetically (AFM) ordered state. We propose a model based on the spin-spin interaction Hamiltonian associated with the spin rotation of the Mn ions, and find that the spin rotations are angularly quantized by 60°, 120°, and 180°. Angular quantization is considered to be a consequence of the symmetry of the triangular lattice of the Mn-ion plane in the hexagonal LuMnO3. These angularly-quantized spin excitations may be pictured as isolated flat bubbles in the sea of the ground state, which may lead to high-density information storage if applied to spin devices. Optically pumped and detected spin-excitation bubbles would bring about the advanced technology of optical control of the spin degree of freedom in multiferroic materials.

5.
Phys Rev Lett ; 127(26): 267203, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029465

ABSTRACT

Topological magnonic materials have attracted much interest because of the potential for dissipationless spintronic applications. Pyrochlore iridates are theoretically regarded as good candidates for designing topological magnon bands. However, experimental identification of topological magnon bands in pyrochlore iridates remains elusive. We explored this possibility in Y_{2}Ir_{2}O_{7} using Raman spectroscopy to measure both the single-magnon excitations and anomalous phonon shifts. From the single-magnon energies and tight-binding model calculations concerning the phonons, we determined the key parameters in the spin Hamiltonian. These confirm that Y_{2}Ir_{2}O_{7} hosts a nontrivial magnon band topology distinct from other pyrochlore iridate compounds. Our work demonstrates that pyrochlore iridates constitute a system in which the magnon band topology can be tailored and that Raman spectroscopy is a powerful technique to explore magnon band topology.

6.
Nat Commun ; 8(1): 1702, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29150597

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this article.

7.
Nat Commun ; 8(1): 251, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811471

ABSTRACT

5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd2Os2O7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd2Os2O7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd2Os2O7 and that it exhibits complex spin-charge-lattice coupling.

8.
Sci Rep ; 5: 13366, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26300075

ABSTRACT

Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn(3+) sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions.

9.
J Nanosci Nanotechnol ; 11(7): 6494-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121743

ABSTRACT

To extend the light absorption of TiO2-based photocatalysts towards the visible-light range and to eliminate the rapid recombination of excited electrons/holes during photoreaction, a new type of photocatalyst (N-doped TiO2) powder was prepared through a simple sol-gel process. The crystal phase composition, structure, and light absorption of the new photocatalyst were comprehensively examined via X-ray diffraction, ultraviolet-visible (UV-Vis) absorption spectroscopy, and atomic-absorption spectroscopy. The photo-oxidation efficiency of the photocatalyst was also evaluated in the photodegradation of methylene blue (MB) and of phenol in aqueous solutions under visible-light irradiation from a neon lamp (lambda > 400 nm). The results of the analyses that were performed in this study indicated that the N-doped TiO2 could eliminate the electron/holes recombination and could increase the light absorption in the visible range. The results of the analysis of the UV-Vis diffuse reflection and optical-absorption spectra indicated that a new energy level below 3.2 eV generated in the N-doped TiO2 promoted the optical absorption in the visible-light region and made visible-light excitation possible (E < 3.2 eV). The experiment demonstrated that the photo-oxidation efficiency of MB when N-doped TiO2 powder was used was significantly higher than that when the conventional TiO2 powders were used. The development of such photocatalyst may be considered a breakthrough in the large-scale utilization of solar energy to address the current and future environmental needs.

10.
Analyst ; 135(9): 2372-6, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20668743

ABSTRACT

Protein detection using surface-enhanced Raman scattering (SERS) usually requires electrolytes to yield an enhanced SERS signal. However, the adsorption mechanism of electrolyte and protein to Ag colloid is not yet clearly understood. In this work, we have investigated co-adsorption of NO(3)(-) and lysozyme to Ag colloid using SERS. Three experimental factors including concentration of lysozyme (10(-5) and 10(-6) M), concentration of NO(3)(-) (0, 1, 2, 3 and 5 mM) and drying temperature (25 and 100 degrees C) have been studied. The results have shown that the co-adsorption of the adsorbates (lysozyme and NO(3)(-)) on a SERS substrate and the non-absorption of NO(3)(-) on the substrate can be controlled by using different experimental conditions. The co-adsorption manner of lysozyme and NO(3)(-) is consistent with the mechanism of double-layer adsorbates when a protein adsorbs on a solid/liquid interface. The variation in protein conformation, especially the main-chain conformation, seems to affect the adsorption manner of the adsorbates. It has been found that the final adsorption result is not affected by the addition sequence of lysozyme and NO(3)(-) during the sample preparation.


Subject(s)
Colloids/chemistry , Electrolytes/chemistry , Muramidase/analysis , Silver/chemistry , Spectrum Analysis, Raman/methods , Adsorption , Nitrates/chemistry , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...