Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511556

ABSTRACT

The removal of nitrogen from coal tar pitch (CTP) through the hydrodenitrogenation (HDN) of CTP and its molecular behavior were evaluated in the presence of NiMo/γ-alumina and CoMo/γ-alumina catalysts. Fourier transform ion cyclotron resonance mass spectrometry with atmospheric pressure photoionization was used to analyze the complicated chemical classes and species of CTP and the treated products at the molecular level. Nitrogen species were qualitatively analyzed before and after hydrotreatment. A single-stage hydrotreatment with an HDN catalyst resulted in a high sulfur removal performance (85.6-94.7%) but a low nitrogen removal performance (26.8-29.2%). Based on relative abundance analyses of nitrogen and binary nitrogen species, CcHh-NnSs was the most challenging species to remove during HDN treatment. Furthermore, prior hydrodesulfurization was combined with HDN treatment, and the dual hydrotreatments yielded a significantly improved nitrogen removal performance (46.4-48.7%).


Subject(s)
Coal Tar , Nitrogen/chemistry , Aluminum Oxide , Denitrification , Mass Spectrometry/methods
2.
Korean J Chem Eng ; : 1-13, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37363783

ABSTRACT

We successfully prepared activated carbon derived from polyethylene terephthalate (PET) via carbonization and subsequent activation under various conditions and applied it as active material for supercapacitors. In the activation, we used CO2 for physical activation or KOH for chemical activation and varied the activation temperature from 600 °C to 1,000 °C. We found that CO2 activation is unsuitable because of insufficient pore formation or low activation yield. Interestingly, PET-derived activated carbon obtained using KOH (PETK) at 700 °C-900 °C exhibited higher specific surface areas than YP50f, which is a commercial activated carbon. Furthermore, some PETKs even displayed a dramatic increase in crystallinity. In particular, the PET-derived activated carbon prepared at 900 °C with KOH (PETK900) had the highest retention rate at a high charge-discharge rate and better durability after 2500 cycles than YP50f. Furthermore, employing the same process that we used with the PET chips, we successfully converted waste PET bottles into activated carbon materials. Waste PET-derived activated carbons exhibited good electrochemical performance as active material for supercapacitors. We thus found chemical activation with KOH to be an appropriate method for manufacturing PET-derived activated carbon and PETKs derived both from PET chips and waste PET have considerable potential for commercial use as active materials for supercapacitors. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s11814-023-1466-3 and is accessible for authorized users.

3.
Macromol Rapid Commun ; 43(10): e2200006, 2022 May.
Article in English | MEDLINE | ID: mdl-35316561

ABSTRACT

High-performance supercapacitors based on activated carbons (AC) derived from polyethylene (PE), which is one of the most abundant plastic materials worldwide, are fabricated. First, PE carbons (PEC) are prepared via sulfonation, which is a reported solution for successful carbonization of innately non-carbonizable PE. Then, the physico-electrical changes of PECs upon a chemical activation process are explored. Interestingly, upon the chemical activation, PECs are converted ACs with a large surface area and high crystallinity at the same time. Subsequently, PE-derived ACs (PEAC) are exploited as electrode materials for supercapacitors. Resultant supercapacitors based on PEACs exhibit impressive performance. When compared to supercapacitors based on YP50f, representative commercial ACs, devices using PEACs presented considerably good capacitance, low resistance, and great rate capability. Specifically, the retention rate of devices using PEACs is significantly higher than that of YP50f-based devices. At the high rate of charge-discharge situation reaching 7 A g-1 , the capacitance of supercapacitors using PEACs is ≈70% higher than that of YP50f-based devices. It is assumed that the carbon structure accompanying both large surface area and high conductivity endows a great electrochemical performance at the high current operating conditions. Therefore, it is envisioned that PE may be a viable candidate electrode material for commercially available supercapacitors.

4.
Macromol Rapid Commun ; 43(1): e2100467, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34643991

ABSTRACT

Even though plastic improved the human standard of living, handling the plastic waste represents an enormous challenge. It takes more than 100 years to decompose discarded or buried waste plastics. Microplastics are one of the causes of significantly pervasive environmental pollutants. The incineration of plastic waste generates toxic gases, underscoring the need for new approaches, in contrast to conventional strategies that are required for recycling plastic waste. Therefore, several studies have attempted to upcycle plastic waste into high value-added products. Converting plastic waste into carbonaceous materials is an excellent upcycling technique due to their diverse practical applications. This review summarizes various studies dealing with the upcycling of plastic waste into carbonaceous products. Further, this review discusses the applications of carbonaceous products synthesized from plastic waste including carbon fibers, absorbents for water purification, and electrodes for energy storage. Based on the findings, future directions for effective upcycling of plastic waste into carbonaceous materials are suggested.


Subject(s)
Plastics , Recycling , Gases , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...