Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Environ Pollut ; 337: 122594, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742866

ABSTRACT

Removing volatile organic compounds (VOCs) from aqueous solutions is critical for reducing VOC emissions in the environment. Activated carbons are widely used for removal of VOCs from water. However, they show less application feasibility and low removal due to less surface area. Here, a cost-effective and high surface area activated carbonized polyaniline (ACP) was synthesized to sustainable removal of VOCs from water. The ACP microstructure, surface properties, and pore structure were investigated using Brunauer-Emmett-Teller (BET) theory, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The specific surface area of ACP6:1 (2988.13 m2/g) was greater than that of commercial activated carbon (PAC) (1094.49 m2/g), indicating that it has excellent VOC adsorption capacity. The effects of pH, initial VOC concentration, time, temperature, and ionic strength were studied. According to kinetic and thermodynamic studies on VOCs adsorption, it is an exothermic and spontaneous process involving rate-limiting kinetics. Adsorption isotherms follow the Freundlich isotherm model, suggesting that the adsorbent surface is heterogeneous with multilayer adsorption and maximum ACP adsorption capacities of 1913.9, 2453.3, 1635.8, and 3327.0 mg/g at 293 K for benzene, toluene, ethylbenzene, and perchloroethylene, respectively, representing a 3- to 5-fold improvement over PAC. ACP is a promising adsorbent with a high adsorption efficiency for VOC removal.


Subject(s)
Volatile Organic Compounds , Water Pollutants, Chemical , Charcoal/chemistry , Volatile Organic Compounds/chemistry , Thermodynamics , Water , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 337: 139323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392794

ABSTRACT

In this study, first time the combination of composites with Phytic acid (PA) as the organic binder cross-linker is reported. The novel use of PA with single and double conducting polymers (polypyrrole (Ppy) and polyaniline (Pani)) were tested against removal of Cr(VI) from wastewater. Characterizations (FE-SEM, EDX, FTIR, XRD, XPS) were performed to study the morphology and removal mechanism. The adsorption removal capability of Polypyrrole - Phytic Acid - Polyaniline (Ppy-PA-Pani) was deemed to be higher than Polypyrrole - Phytic Acid (Ppy-PA) due to the mere existence of Polyaniline as the extra polymer. The kinetics followed 2nd order with equilibration at 480 min, but Elovich model confirmed that chemisorption is followed. Langmuir isotherm model exhibited maximum adsorption capacity of 222.7-321.49 mg/g for Ppy-PA-Pani and 207.66-271.96 mg/g for Ppy-PA at 298K-318K with R2 values of 0.9934 and 0.9938 respectively. The adsorbents were reusable for 5 cycles of adsorption-desorption. The thermodynamic parameter, ΔH shows positive values confirmed the adsorption process was endothermic. From overall results, the removal mechanism is believed to be chemisorption through Cr(VI) reduction to Cr(III). The use of phytic acid (PA) as organic binder with combination of dual conducting polymer (Ppy-PA-Pani) was invigorating the adsorption efficiency than just single conducting polymer (Ppy-PA).


Subject(s)
Polymers , Water Pollutants, Chemical , Phytic Acid , Water Pollutants, Chemical/analysis , Pyrroles , Chromium/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
3.
Environ Technol ; 44(3): 342-353, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34407739

ABSTRACT

Nowadays, nanoscale materials have been widely applied in the removal of contaminants from the water system. Reduction of Cr(VI) (as a poisonous species) to Cr(III) (as a slight toxic species) was performed using CuO-Kaolin with ultrasound (US) irradiation. The CuO-Kaolin nanocomposite was synthesized via a facile co-precipitation method. Then X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and Energy dispersive X-ray spectroscopy analyses were performed to identify the structural features of CuO-Kaolin. The role of influential parameters for the reduction of Cr(VI) was investigated in sonocatalytic advanced oxidation system. About 89.35% of Cr(VI) was removed via US/CuO-Kaolin process after 90 min at optimum conditions (pH = 3, sonocatalyst dosage = 1 g L-1 and [Cr (VI)]0 = 20 mg L-1). This outstanding result was due to the synergistic effect of the increased electron delivery to conduction band on CuO-Kaolin nanocomposite and the increased reactive surface region of nanoparticles by sonication. The presence of H2O2 as an amplifier improved the removal efficiency of Cr(VI) from 89.35% to 100% after 20 min. Kinetic experimental results were well described by a pseudo-first-order kinetic model. Desorption experiments showed excellent stability of sonocatalyst during the reaction and maintenance of the catalytic activity up to 10 sequential cycles.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Kaolin/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide , Chromium/chemistry , Adsorption
4.
Environ Sci Pollut Res Int ; 30(2): 3527-3548, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35947265

ABSTRACT

In first, the Ni-doped ZnO nanorods used as an appeal sonocatalyst was synthesized through co-precipitation method. Afterwards, the crystalline structure, functional groups, surface morphology, and elemental composition were characterized by a set of analysis. Removal of diazinon ((DZ) as a renowned pesticide) was investigated using sonocatalytic performance of US/Ni-doped ZnO system. In this empirical study, response surface methodology (RSM) based central composite design (CCD) was applied for optimization of operational factors. Under the optimum conditions such as initial pH = 5, initial DZ concentration = 15 mg L-1, sonocatalyst dosage = 1 g L-1, and in the presence of organic compounds (oxalic acid, humic acid, and folic acid) = 3 mg L-1, the sonocatalytic degradation of DZ after 15 min was 82.29%. The F-value (6.64) and P-value (< 0.0001) for DZ degradation in the quadratic model imply the proposed model was significant. A-factor (pH) considers as a prominent factor owing to having the highest F-value. In addition, the sonocatalytic data in this study exhibited valid fitting for the first order kinetic model (R2 > 0.98). After six consecutive cycles, the Ni-doped ZnO nanorods could be recyclable for sonocatalytic degradation of DZ. The five main compounds produced during the US/Ni-doped ZnO embracing 2-isopropyl-6-methyl-4-pyrimidinol (IMP), diethyl phosphonate, diazoxon, hydroxyldiazinon, and diazinon methyl ketone are formed in the path of DZ degradation. OFAT style also revealed 99.99% of DZ degradation with 73.26% of mineralization rate in optimum status. The Ni-doped ZnO presented agreeable sonocatalytic facility in the refinement of real water and wastewater matrix. Finally, the results of toxicity evaluation (Daphnia magna) in the sonocatalytic degradation of DZ (by US/Ni-doped ZnO system) showed that the toxicity of the DZ solution lessened under US waves (LC50 and TU 48 h equal to 36.472 and 2.741 volume percent, respectively).


Subject(s)
Pesticides , Zinc Oxide , Diazinon , Ultrasonics , Zinc Oxide/chemistry , Wastewater
5.
J Environ Manage ; 317: 115403, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35660830

ABSTRACT

Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Benzo(a)pyrene/analysis , Benzo(a)pyrene/metabolism , Metals, Heavy/analysis , Oxidative Stress , Soil , Soil Microbiology , Soil Pollutants/analysis
6.
Sci Rep ; 12(1): 3430, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236886

ABSTRACT

Heavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM-EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Zeolites , Adsorption , Carboxymethylcellulose Sodium , Coal Ash , Kinetics , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared , Wastewater , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 286(Pt 2): 131776, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34371355

ABSTRACT

Biosorption using modified biochar has been increasingly adopted for the sustainable removal of uranium-contaminated from an aqueous solution. In this research study, the facile preparation and surface characteristics of magnetized biochar derived from waste watermelon rind to treat U(VI) contaminated water were investigated. The porosity, specific surface area, adsorption capacity, reusability, and stability were effectively improved after the magnetization of biochar. The kinetics and isotherm studies found that the U(VI) adsorption was rate-limiting monolayer sorption on the homogeneous surface of magnetized watermelon rind biochar (MWBC). The maximum adsorption capacity was found to be 323.56 mg of U(VI) per g of MWBC at pH 4.0 and 293 K that was higher than that of watermelon rind biochar (WBC) (135.86 mg g-1) and other sourced biochars. The surface interaction mechanism, environmental feasibility, applicability for real-filed water treatment studied in the electromagnetic semi-batch column, and reusability of MWBC were also explored. Furthermore, salient raised the ion exchange and complexation action capacity of MWBC due to the presence of Fe oxide. The overall results indicated that MWBC was not only inexpensive and had a high removal capacity for U(VI), but it also easily enabled phase separation from an aqueous solution, with more than three times reusability at a minimum removal capacity of 99%.


Subject(s)
Citrullus , Uranium , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Electromagnetic Phenomena , Kinetics , Uranium/analysis
8.
Polymers (Basel) ; 13(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771391

ABSTRACT

Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO-Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO-Gd were examined. The PGO-Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g-1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo-second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO-Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO-Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.

9.
J Hazard Mater ; 417: 125995, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34004581

ABSTRACT

This study utilized a facile and scalable one-pot wet impregnation method for Hg(II) adsorption to prepare sulfur-anchored palm shell waste activated carbon powder (PSAC-S). The experimental results revealed that the sulfur precursors promote the surface charge on the PSAC and enhance Hg(II) removal via the Na2S > Na2S2O4 > CH3CSNH2 sequence. PSAC-S prepared using Na2S had significant Hg(II) sorption efficiencies, achieving a maximum sorption capacity of 136 mg g-1 from the Freundlich model. Compared to PSAC, PSAC-S had an enhancement in Hg(II) sorption behavior for heterogeneous interactions with sulfur. PSAC-S also demonstrated high Hg(II) sorption capacities over a wide range of solution pH, while ionic strength had an insignificant impact on Hg(II) removal efficiencies. Through various spectroscopic analyses, we identified the mechanisms of Hg(II) removal by PSAC-S as electrostatic interactions, Hg-Cl complexation, and precipitation as HgSO4. Moreover, PSAC-S unveiled high adsorption affinity and Hg(II) stability in actual groundwater (even in µg L-1 level). These overall results show the potentials of PSAC-S as an alternative, easily scalable material for in-situ Hg(II) remediation.


Subject(s)
Groundwater , Mercury , Adsorption , Charcoal , Sulfur
10.
Environ Sci Pollut Res Int ; 28(29): 38809-38816, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33740190

ABSTRACT

In this study, copper oxide nanoparticles (CuONPs) were prepared by a simple chemical method and then characterized by scanning electron microscope (SEM). A novel electrochemical sensor for hydrogen peroxide (H2O2) analysis was prepared by immobilizing copper oxide nanoparticles and polyalizarin yellow R (PYAR) on bare glassy carbon electrode (PAYR/CuONPs/GCE). The electrocatalytical behavior of the proposed electrochemical sensor was also studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Based on the results, the PAYR/CuONP nanocomposite had significant electrocatalytic oxidation and reduction properties for the detection and determination of H2O2. Some parameters such as linear range, sensitivity, and detection limit for reduction peak were obtained as 0.1-140 µM, 1.4154 µA cm-2 µM-1, and 0.03 µM, respectively, by the DPV technique. Some advantages of this electrode were having widespread linear range, low detection limit, and, most importantly, ability in simultaneous oxidation and reduction of H2O2 at two applied potentials.


Subject(s)
Graphite , Nanocomposites , Nanoparticles , Copper , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Limit of Detection
11.
Chemosphere ; 267: 128889, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33187656

ABSTRACT

Heavy metals contamination of water is one of the environmental issue globally. Thus prepared fly ash-based zeolite (FZA)-supported nano zerovalent iron and nickel (nZVI/Ni@FZA) bimetallic composite from low-cost fly ash waste for the potential treatment of anion (Cr(VI) and cation Cu(II)) heavy metals from industrial effluents at pH 3 and 5, respectively in this study. The systematic interaction between FZA and nZVI/Ni and the adsorptive removal mechanism was studied. The mean surface area of the nZVI/Ni@FZA (154.11 m2/g) was much greater than that of the FZA (46.6 m2/g) and nZVI (4.76 m2/g) independently, as determined by BET-N2 measurements. The effect of influence factors on the removal of Cr(VI) and Cu(II) by nZVI/Ni@FZA, such as pH effect, initial concentration effect, time effect, temperature effect, coexisting metals, and ionic strength, and cumulative loading ability, were discussed. The maximum adsorption capacity of nZVI/Ni@FZA was 48.31 mg/g and 147.06 mg/g towards Cr(VI) and Cu(II), respectively. These were higher than those of nZVI@FZA and FZA. It demonstrated that Ni could play an important role in enhancing the reduction ability of nZVI. Furthermore, isothermal and kinetic results revealed that both heavy metal adsorption processes were rate limiting monolayer Langmuir adsorption on homogeneous surfaces. Thermodynamic results suggested that the adsorptive removal of metal ions was endothermic with spontaneity. The applicability of nZVI/Ni@FZA on real industrial wastewater treatment results demonstrate that the concentration of heavy metals were removed under the acceptable standard levels. Further the adsorption capacity of nZVI/Ni@FZA was higher than the nZVI@FZA and FZA. The overall results demonstrated that nZVI/Ni@FZA was a promising, efficient, and economically feasible sorbent for potential wastewater treatment. Moreover this is first report on the preparation nZVI/Ni@FZA bimetallic composite.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Zeolites , Adsorption , Coal Ash , Iron , Kinetics , Nickel , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 27(3): 2691-2706, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31836985

ABSTRACT

The aim of this research was to develop a simple and inexpensive process for reduction of Cr(VI) to Cr(III). Zinc oxide nanoparticles were synthesized with an easy co-precipitation procedure, and the addition of Cu2+ doping agent effectively enhanced the Cr(VI) reduction in the presence of ultrasound (US). XRD, FT-IR, FE-SEM, EDX, VSM, and XPS were used to determine the structural specifications of the zinc oxide nanoparticles. Under optimal conditions such as pH 3, initial Cr(VI) content of 20 mg/L, and catalyst dosage of 0.8 g/L, the ultrasonic/Cu-ZnO process showed a higher sonocatalytic activity (96.83%) than ultrasonic/ZnO (67.36%) after 60 min. By increasing pH and Cr(VI) concentration, the removal efficacy of Cr(VI) declined. The experimental data was well described with the first-order kinetic model. When initial Cr(VI) concentration increased from 10 to 50 mg/L, the first-order rate constant declined from 0.2326 to 0.0019 min-1 and electrical energy per order (EEO) enhanced from 19.81 to 2425.26 kWh/m3. Also, the ultrasonic/Cu-ZnO system exhibited considerable sonocatalytic performance in Cr(VI) reduction in the presence of hydrogen peroxide and citric acid, and complete removal was achieved within 60 min. The presence of anions negatively affected Cr(VI) reduction. Complete reduction was attained when ultrasound was applied at a power of 100 W. The catalyst activity was well maintained up to six consecutive cycles. In addition, the removal efficiency was approximately 62 and 65% for field water and real electroplating wastewater samples, respectively.


Subject(s)
Chromium/chemistry , Nanotubes , Water Pollutants, Chemical/chemistry , Water Purification/methods , Zinc Oxide , Spectroscopy, Fourier Transform Infrared
13.
Chemosphere ; 243: 125257, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31726263

ABSTRACT

Pb(II) ions in water bodies is a wide concern to the human beings as wells as aquatic organisms. Among various water-treatment techniques, adsorption is generally preferred, but it applications are limited due to the large amount of adsorbent needed and thus the increased operating cost. In this study, iron nanocomposites (T-Fe3O4) are synthesized from bio-waste mass (tangerine peel) and adsorption experiments are carried out for Pb(II) removal from aqueous solution. The characterization studies confirm the mesoporous hexagonal nano-crystalline structure of T-Fe3O4 nanocomposite having less than 100 nm diameter. The adsorption process was optimized using response surface methodology with a central composite design framework. The study of the interaction effects showed that they have significant effect on adsorption removal efficacy. The curvature nature of the contour plots confirmed the interaction intensity among the independent process variables. Based on the analysis, the optimum conditions to achieve 95% of Pb(II) removal were found to be for an initial concentration of 32.5 g/L, the dosage of 0.625 mg/L, the contact time of 95 min and pH of 4.5. Therefore, results confirm that the green synthesized T-Fe3O4 nanocomposite, which showed good efficiency, can be a potential candidate to achieve sustainable water purification.


Subject(s)
Lead/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Ferric Compounds , Hydrogen-Ion Concentration , Ions , Iron/analysis , Kinetics , Water Pollutants, Chemical/analysis
14.
Environ Sci Pollut Res Int ; 26(22): 22323-22337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31154648

ABSTRACT

Uranium U(VI) is toxic even at trace levels in aqueous solution and has adverse impacts on the health of human beings. In this study, a sugar-based magnetic pseudo-graphene oxide (SMGO) composite was prepared for the removal of U(VI) from groundwater by graphitization of sugar and ozonation, as well as synthesis with nano-size magnetite particles. To investigate the applicability of SMGO, U(VI)-spiked groundwater as well as U(VI)-contaminated groundwater samples were used in electromagnetic system. The pH-edge adsorption results suggest that adsorption occurs via an inner-sphere surface complex with an optimized pH of 4, where UO22+ is the dominant U(VI) species. The adsorption isotherm results confirmed that the adsorption of U(VI) onto SMGO occurred via a monolayer process on the homogeneous surface of SMGO and the maximum removal capacity of U(VI) was 28.2 mg/g. The high-gradient magnetic separation (HGMS) principle was applied to U(VI) removal using SMGO to facilitate recovery and the repeated use of the adsorbent during multiple batch cycles. The results indicated that the initial U(VI) concentration (439.1 µg/L) was reduced to a value less than the standard level of U(VI) for drinking water (30 µg/L) during six batch cycles and the separation efficiency was 95.2%. As such, SMGO and electromagnetic system using the HGMS principle are promising technologies for the removal of U(VI) in groundwater.


Subject(s)
Graphite/chemistry , Groundwater/analysis , Sugars/chemistry , Uranium/chemistry , Adsorption , Electromagnetic Phenomena , Ferrosoferric Oxide , Groundwater/chemistry , Magnetics , Water , Water Purification/methods
15.
Water Sci Technol ; 79(2): 375-385, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30865609

ABSTRACT

In this study, photocatalysis of phenol was studied using Cd-ZnO nanorods, which were synthesized by a hydrothermal method. The Cd-ZnO photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) and UV-Vis spectroscopy. XRD patterns exhibit diffraction peaks indexed to the hexagonal wurtzite structures with the P63mc space group. SEM images showed that the average size of the Cd-ZnO nanorods was about 90 nm. Moreover, the nanorods were not agglomerated and were well-dispersed in the aqueous medium. FT-IR analysis confirmed that a surface modifier (n-butylamine) did not add any functional groups onto the Cd-ZnO nanorods. The dopant used in this study showed reduction of the bandgap energy between valence and conduction of the photocatalyst. In addition, effect of various operational parameters including type of photocatalyst, pH, initial concentration of phenol, amount of photocatalyst, and irradiation time on the photocatalytic degradation of phenol has been investigated. The highest phenol removal was achieved using 1% Cd-ZnO for 20 mg/l phenol at pH 7, 3 g/l photocatalyst, 120 min contact time, and 0.01 mole H2O2.


Subject(s)
Cadmium/chemistry , Models, Chemical , Phenol/chemistry , Zinc Oxide/chemistry , Catalysis , Hydrogen Peroxide , Photochemical Processes , Spectroscopy, Fourier Transform Infrared
16.
Acta Chim Slov ; 65(3): 599-610, 2018.
Article in English | MEDLINE | ID: mdl-33562914

ABSTRACT

Graphitic carbon-like material (GCM) derived from edible sugar under a nitrogen environment was applied as an adsorbent for the removal of anionic and cationic dyes (methyl orange, MO) and methylene blue (MB) from wastewater. The physico-chemical characterization of GCM was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The plate-like morphology with an average size of 50-100 nm was measured from the SEM images. The measured BET 'surface area and pore volume were 574 m2/g and 0.248 cm3/g, respectively with pore diameter (d), 1.8 47 (< 2 nm) indicates that the GCM classified as a microporous. The effects of dosage, pH, contact time and concentration on the adsorption of MB and MO onto GCM were studied to unveil the adsorption process. The experimental isotherm data concurred with the Langmuir isotherm model (R2 = 0.990) for MB, while the MO isotherm data concurred with Freundlich model (R2 = 0.995). The maximum adsorption capacity achieved from the Langmuir isotherm equation at 25 °C was 38.75 and 43.48 mg/g for MB and MO, respectively, which indicates that GCM is a suitable adsorbent for the adsorption of both anionic and cationic dyes. The kinetic study demonstrated that the adsorption of both dyes onto GCM was the pseudo-second-order diffusion kinetics. The thermodynamic parameters reveal the adsorption of both dyes was endothermic spontaneous through chemical interactions. The GCM was found to be a potential adsorbent for the removal of MB and MO from an aqueous solution.

17.
Water Sci Technol ; 75(10): 2369-2380, 2017 May.
Article in English | MEDLINE | ID: mdl-28541945

ABSTRACT

In this study, removal of Cr(VI) by Scallop shell-Fe3O4 nanoparticles was investigated with variation of pH, adsorbent dosage, initial Cr(VI) concentration, ionic strength and temperature. Coating of Fe3O4 nanoparticles onto Scallop shell was identified by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The maximum adsorption was observed at pH 3. Removal efficiency of Cr(VI) was increased with increasing adsorbent dosage, but was decreased with increasing initial Cr(VI) concentration and temperature. Removal efficiency of Cr(VI) was decreased in the presence of sulfate and carbonate ions. Adsorption kinetic study revealed that a pseudo-second order model better described the removal data than a pseudo-first order model and an intra-particle diffusion model. Maximum adsorption capacity was estimated to be 34.48 mg/g. Thermodynamic studies indicated that adsorption of Cr(VI) onto Scallop shell-Fe3O4 nanoparticles occurred via an exothermic (ΔH = -320.88 KJ mol-1) process. Adsorption efficiency of Cr(VI) by Scallop shell-Fe3O4 nanoparticles was maintained even after eight successive cycles.


Subject(s)
Chromium/chemistry , Nanoparticles , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Animal Shells/chemistry , Animals , Chromium/analysis , Ferric Compounds , Hydrogen-Ion Concentration , Kinetics , Pectinidae , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
18.
J Hazard Mater ; 326: 145-156, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28013158

ABSTRACT

For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41nm and 32.16nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333±2K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

19.
J Environ Manage ; 175: 60-6, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27038433

ABSTRACT

The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process.


Subject(s)
Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Phenol/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Kinetics , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxides/chemistry , Phenol/analysis , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Ultrasonics , Water/chemistry , Water Pollutants, Chemical/analysis , X-Ray Diffraction
20.
Environ Sci Pollut Res Int ; 23(2): 1044-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552791

ABSTRACT

A simple cyclic voltammetry (CV) analytical method with organo-modified sericite for the working electrode was investigated to detect As(III) in an aquatic environment, and optimal conditions for the reliable measurement of trace amounts of As(III) were studied. A distinct, specific peak was clearly observed at 0.8 V due to the reduction of H3AsO4 to H3AsO3. The specific peak current of arsenic increased with increasing the concentration of As(III) and initially increased proportionally to the scan rates. However, it disappeared as the scan rate increased over 400 mV/s. Because the surface of the organo-modified sericite electrode rapidly became saturated with As(III) when the deposition time increased, an optimal deposition time was determined as 60 s. Pb(2+) had no significant influence on the peak signal of As(III), whereas it was reduced as the ratio of Cu/As increased. Considering the detection limit of arsenic (1 ppb), this system can be used to detect low levels of As(III) in water systems.


Subject(s)
Arsenic/analysis , Chemistry Techniques, Analytical , Silicon Dioxide/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...