Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113311, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461536

ABSTRACT

The absolute response of a real-time proton detector, composed of a microchannel plate (MCP) assembly, an imaging lens, and a charge-coupled device (CCD) camera, is calibrated for the spectral characterization of laser-accelerated protons, using a Thomson parabola spectrometer (TPS). A slotted CR-39 plate was used as an absolute particle-counting detector in the TPS, simultaneously with the MCP-CCD detector to obtain a calibration factor (count/proton). In order to obtain the calibration factor as a function of proton energy for a wide range of proton numbers, the absolute response was investigated for different operation parameters of the MCP-CCD detector, such as MCP voltage, phosphor voltage, and CCD gain. A theoretical calculation for the net response of the MCP was in good agreement with the calibrated response of the MCP-CCD detector, and allows us to extend the response to higher proton energies. The response varies in two orders of magnitude, showing an exponential increase with the MCP voltage and almost linear increase with the phosphor voltage and the CCD gain. The calibrated detector enabled characterization of a proton energy spectrum in a wide dynamic range of proton numbers. Moreover, two MCP assemblies having different structures of MCP, phosphor screen, and optical output window have been calibrated, and the difference in the absolute response was highlighted. The highly-sensitive detector operated with maximum values of the parameters enables measuring a single proton particle and evaluating an absolute spectrum at high proton energies in a single laser shot. The absolute calibrations can be applied for the spectral measurement of protons using different operating voltages and gains for optimized response in a large range of proton energy and number.

2.
Opt Express ; 30(15): 26212-26219, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236816

ABSTRACT

We analyzed and corrected the wavefront distortion induced during the post-compression of a 100-TW Ti:Sapphire laser and achieved the intensity enhancement. In the post-compression, the spectral broadening of the laser was obtained by propagating through three 0.5 mm-thick fused silica plates and the laser pulse duration was post-compressed from 24 fs to 11 fs using a set of chirped mirrors. We measured the wavefront aberrations due to the intensity-dependent nonlinear process during the post-compression of femtosecond high-power laser pulses. By compensating for the wavefront aberrations with an adaptive optics system, the Strehl ratio of the post-compressed beam was improved from 0.37 to 0.52 and the focused intensity of the post-compressed beam could be enhanced by a factor of 1.5, while the enhancement without the wavefront correction was only a factor of 1.1 in spite of the peak-power enhancement by a factor of 1.8.

3.
Sci Rep ; 12(1): 11128, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778463

ABSTRACT

A localized nanoparticle insertion scheme is developed to decouple electron injection from laser evolution in laser wakefield acceleration. Here we report the experimental realization of a controllable electron injection by the nanoparticle insertion method into a plasma medium, where the injection position is localized within the short range of 100 µm. Nanoparticles were generated by the laser ablation process of a copper blade target using a 3-ns 532-nm laser pulse with fluence above 100 J/cm2. The produced electron bunches with a beam charge above 300 pC and divergence of around 12 mrad show the injection probability over 90% after optimizing the ablation laser energy and the temporal delay between the ablation and the main laser pulses. Since this nanoparticle insertion method can avoid the disturbing effects of electron injection process on laser evolution, the stable high-charge injection method can provide a suitable electron injector for multi-GeV electron sources from low-density plasmas.

4.
Opt Express ; 30(6): 8734-8741, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299319

ABSTRACT

We demonstrated sub-10 fs pulse generation by the post-compression of a 100 TW Ti:Sapphire laser to enhance the peak-power. In the post-compression, the laser spectrum was widely broadened by self-phase modulation in thin fused silica plate(s), and the induced spectral phase was compensated with a set of chirped mirrors. A spatial filter stage, consisting of two cylindrical lenses and a spherical lens, was employed to reduce the intensity modulation existing in the laser beam, which effectively suppressed intensity spikes induced by self-focusing. The laser beam was post-compressed from 23 fs to 9.7 fs after propagating through a 1.5 mm fused silica plate, resulting in the peak-power enhancement by a factor of 2.1.

5.
Rev Sci Instrum ; 92(2): 023302, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648087

ABSTRACT

We present a proof of principle for onsite calibration of a radiochromic film (EBT3) using CR-39 as an absolute proton-counting detector and laser-accelerated protons as a calibration source. A special detector assembly composed of aluminum range filters, an EBT3 film, and a CR-39 detector is used to expose the EBT3 film with protons in an energy range of 3.65 MeV-5.85 MeV. In our design, the proton beam is divided into small beamlets and their projection images are taken on the EBT3 film and the CR-39 detector by maintaining a certain distance between the two detectors. Owing to the geometrical factor of the configuration and scattering inside the EBT3, the areal number density of protons was kept below the saturation level of the CR-39 detector. We also present a method to relate the number of protons detected on the CR-39 in a narrow energy range to protons with a broad energy spectrum that contribute to the dose deposited in the EBT3 film. The energy spectrum of protons emitted along the target normal direction is simultaneously measured using another CR-39 detector installed in a Thomson parabola spectrometer. The calibration curves for the EBT3 film were obtained in the optical density range of 0.01-0.25 for low dose values of 0.1 Gy-3.0 Gy. Our results are in good agreement with the calibrations of the EBT3 film that are traditionally carried out using conventional accelerators. The method presented here can be further extended for onsite calibration of radiochromic films of other types and for a higher range of dose values.

6.
Opt Lett ; 42(11): 2058-2061, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569844

ABSTRACT

We demonstrated the generation of 4.2 PW laser pulses at 0.1 Hz from a chirped-pulse amplification Ti:sapphire laser. The cross-polarized wave generation and the optical parametric chirped-pulse amplification stages were installed for the prevention of the gain narrowing and for the compensation of the spectral narrowing in the amplifiers, obtaining the spectral width of amplified laser pulses of 84 nm (FWHM), and enhancing the temporal contrast. The amplified laser pulses of 112 J after the final booster amplifier were compressed to the pulses with 83 J at 19.4 fs with a shot-to-shot energy stability of 1.5% (RMS). This 4.2 PW laser will be a workhorse for exploring high field science.

SELECTION OF CITATIONS
SEARCH DETAIL
...