Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Brain Behav ; 13(12): e3315, 2023 12.
Article in English | MEDLINE | ID: mdl-37932960

ABSTRACT

BACKGROUND: Gaming behavior can induce cerebral changes that may be related to the neurobiological features of gaming disorder (GD). Additionally, individuals with higher levels of depression or impulsivity are more likely to experience GD. Therefore, the present pilot study explored potential neurobiological correlates of GD in the context of depression and impulsivity, after accounting for video gaming behavior. METHODS: Using resting-state functional magnetic resonance imaging (fMRI), a cross-sectional study was conducted with 35 highly involved male adult gamers to examine potential associations between GD severity and regional homogeneity (ReHo) in the entire brain. A mediation model was used to test the role of ReHo in the possible links between depression/impulsivity and GD severity. RESULTS: Individuals with greater GD severity showed increased ReHo in the right Heschl's gyrus and decreased ReHo in the right hippocampus (rHip). Furthermore, depression and impulsivity were negatively correlated with ReHo in the rHip, respectively. More importantly, ReHo in the rHip was found to mediate the associations between depression/impulsivity and GD. CONCLUSIONS: These preliminary findings suggest that GD severity is related to ReHo in brain regions associated with learning/memory/mood and auditory function. Higher levels of depression or impulsivity may potentiate GD through the functional activity of the hippocampus. Our findings advance our understanding of the neurobiological differences behind GD symptoms in highly involved gamers.


Subject(s)
Behavior, Addictive , Magnetic Resonance Imaging , Adult , Humans , Male , Pilot Projects , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Brain
2.
Nanoscale ; 15(28): 12116-12122, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37427605

ABSTRACT

Transition-metal dichalcogenides have promising potentials for high-performance electronic and optoelectronic applications, which could be deeply influenced by defects, including native defects and dopants. Experiments to date have frequently reported p-type conductivity in the WSe2 monolayer, but the origin remains elusive. Here, using the first-principles calculations, we systematically investigate the point defects in the WSe2 monolayer and show that: (1) no intrinsic point defect is responsible for the p-type doping; (2) hydrogen interstitials (Hi) are possible sources for n-type conductivity; (3) oxygen substitution of Se (OSe) can greatly promote the formation of adjacent W vacancy (VW), and finally make VW relatively shallow acceptors by forming the defect complex nOSe + VW (n = 1 to 6). Our work reveals that nOSe + VW is the origin of the p-type conductivity in the unintentionally doped WSe2 monolayer, given that O is present throughout the synthesis conditions of WSe2.

3.
Zool Res ; 44(1): 126-141, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36419379

ABSTRACT

Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.


Subject(s)
Mitochondria , Zebrafish , Animals , Humans , Zebrafish/genetics , Gills , Reactive Oxygen Species , Homeostasis , Dual Specificity Phosphatase 1/genetics
4.
Nanoscale ; 14(33): 12007-12012, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35938301

ABSTRACT

It is known that carrier mobility in layered semiconductors generally increases from two-dimensions (2D) to three-dimensions due to fewer scattering channels resulting from decreased densities of electron and phonon states. In this work, we find an abnormal decrease of electron mobility from monolayer to bulk MoS2. By carefully analyzing the scattering mechanisms, we can attribute such abnormality to the stronger intravalley scattering in the monolayer but weaker intervalley scattering caused by few intervalley scattering channels and weaker corresponding electron-phonon couplings compared to the bulk case. We show that it is the matching between the electronic band structure and phonon spectrum rather than their densities of electronic and phonon states that determines scattering channels. We propose, for the first time, the phonon-energy-resolved matching function to identify the intra- and inter-valley scattering channels. Furthermore, we show that multiple valleys do not necessarily lead to strong intervalley scattering if: (1) the scattering channels, which can be explicitly captured by the distribution of the matching function, are few due to the small matching between the corresponding electron and phonon bands; and/or (2) the multiple valleys are far apart in the reciprocal space and composed of out-of-plane orbitals so that the corresponding electron-phonon coupling strengths are weak. Consequently, the searching scope of high-mobility 2D materials can be reasonably enlarged using the matching function as useful guidance with the help of band edge orbital analysis.

5.
ACS Nano ; 16(5): 8107-8115, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35471015

ABSTRACT

Two-dimensional materials with tunable in-plane anisotropic infrared response promise versatile applications in polarized photodetectors and field-effect transistors. Black phosphorus is a prominent example. However, it suffers from poor ambient stability. Here, we report the strain-tunable anisotropic infrared response of a layered material Nb2SiTe4, whose lattice structure is similar to the 2H-phase transition metal dichalcogenides (TMDCs) with three different kinds of building units. Strikingly, some of the strain-tunable optical transitions are crystallographic axis-dependent, even showing an opposite shift when uniaxial strain is applied along two in-plane principal axes. Moreover, G0W0-BSE calculations show good agreement with the anisotropic extinction spectra. The optical selection rules are obtained via group theory analysis, and the strain induced unusual shift trends are well explained by the orbital coupling analysis. Our comprehensive study suggests that Nb2SiTe4 is a good candidate for tunable polarization-sensitive optoelectronic devices.

6.
J Phys Chem Lett ; 13(11): 2474-2478, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35266726

ABSTRACT

Enhancing carrier density and increasing carrier lifetime are critical for the good performance of thin film solar cells. We apply illumination during the growth of kesterite Cu2ZnSnS4 (CZTS) to enhance hole density and suppress defects of nonradiative electron-hole recombination centers simultaneously. To examine the effect of the injected carriers generated by illumination, we first extend the scheme of detailed balance equations relating free carriers and defects beyond thermal equilibrium conditions by developing an extended Fermi level (EF') to characterize a homogeneous semiconductor with non-equilibrium carriers. On the basis of this scheme, we find that illumination can promote the formation of carrier-providing defects and suppress the formation of carrier-compensating defects. Then, we demonstrate that applying proper illumination during the growth of CZTS will help achieve a higher hole density and simultaneously suppress the formation of the SnZn antisite significantly, which are beneficial for the performance of CZTS solar cells.

7.
Nanoscale ; 14(11): 4082-4088, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35234769

ABSTRACT

Monolayer blue phosphorous has a large band gap of 2.76 eV but counterintuitively the most stable bilayer blue phosphorous has a negative band gap of -0.51 eV. Such a large band gap reduction from just monolayer to bilayer has not been revealed before, the underlying mechanism behind which is important for understanding interlayer interactions. In this work, we reveal the origin of the semiconductor-to-metal transition using first-principles calculations and tight-binding models. We find that the interlayer interactions are extremely strong, which can be attributed to the short layer distance and strong π-like atomic orbital couplings. Therefore, the upshift of the valence band maximum (VBM) from monolayer to bilayer blue-P is so large that the VBM in the bilayer gets higher than the conduction band minimum, leading to a negative band gap and an energy gain. Besides, the interlayer atomic misplacements weaken the couplings of out-of-plane orbitals. Therefore, the energy gain due to the semiconductor-to-metal transition is larger than the energy cost due to interlayer repulsions, thus stabilizing the metallic phase. The large band gap reduction with layer number increasing is expected to exist in other similar layered systems.

8.
Nanoscale ; 13(35): 14621-14627, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533551

ABSTRACT

Interlayer interactions play important roles in manipulating the electronic properties of layered semiconductors. One common mechanism is that the valence band maximum (VBM) and the conduction band minimum (CBM) in one layer couple to the VBM and CBM in another layer, respectively, resulting in the decrease of the band gap from the monolayer to the bilayer. Here we report an unusual interlayer coupling mechanism in layered Cu-based ternary chalcogenides CuMCh2 (M = Sb, Bi; Ch = S, Se) that the CBM in one layer strongly couples to the VBM in the other layer, leading to the band gap increase from the monolayer to the bilayer. Such an unusual interlayer interaction arises from the entangling between the electronic structures and the structures of CuMCh2 in which the cations M and anions Ch are alternatively arranged at the outmost part of each layer. Consequently, the M atom at the bottom of the upper layer is very close to the Ch atom at the top of the bottom layer, so that the orbitals of the M atom which dominate the CBM can strongly couple to the orbitals of the Ch atom which dominate the VBM, as demonstrated by the orbital hopping integrals obtained from the Wannier function analysis. The exceptional case of the unusual interlayer interaction revealed in this work enriches the diversity of the interlayer interactions in layered materials and is expected to exist in similar layered systems in which cations and anions are alternatively arranged at the outmost part of each layer.

9.
Nano Lett ; 21(15): 6711-6717, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34297585

ABSTRACT

Despite the great appeal of two-dimensional semiconductors for electronics and optoelectronics, to achieve the required charge carrier concentrations by means of chemical doping remains a challenge due to large defect ionization energies (IEs). Here, by decomposing the defect IEs into three parts based on ionization process, we propose a conceptual picture that the large defect IEs are caused by two effects of reduced dimensionality. While the quantum confinement effect makes the neutral single-electron point defect levels deep, the reduced screening effect leads to high energy cost for the electronic relaxation. The first-principles calculations for black phosphorus and MoS2 do demonstrate the general trend. Using BP monolayer either embedded into dielectric continuum or encapsulated between two hBN layers, we demonstrate the feasibility of increasing the screening to reduce the defect IEs. Our analysis is expected to help achieve effective carrier doping and open ways toward more extensive applications of 2D semiconductors.

10.
Parasit Vectors ; 14(1): 295, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34082780

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is a parasitic disease that is caused by Echinococcus granulosus (Eg). The recombinant Echinococcus granulosus antigen P29 (rEg.P29) was shown to confer effective immunity to sheep and mice during E. granulosus secondary infection in our previous study. In this study, we sought to investigate the ability of long noncoding RNA 028466 (lncRNA028466) as a regulator for the protective immunity mediated by rEg.P29 vaccination and to study the effects of lncRNA028466 on CD4+T cell differentiation in mice spleen. METHODS: Female BALB/c mice were divided into two groups and were vaccinated subcutaneously with rEg.P29 antigen and PBS as a control (12 mice each group). Following prime-boost vaccination, CD4+T, CD8+T, and B cells from the spleen were isolated by flow cytometry. Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of lncRNA028466 in these three kinds of cells. Then, lncRNA028466 was overexpressed and knocked down in naive CD4+T cells, and Th1 and Th2 cytokine expression was detected. qRT-PCR, western blot, and ELISA were performed to evaluate the production of IFN-γ, IL-2, IL-4, and IL-10, and flow cytometry was performed to detect the differentiation of Th1 and Th2 subgroups. RESULTS: lncRNA028466 was significantly decreased after the second week of immunization with rEg.P29 antigen. The proportion of CD4+ T cells was increased after rEg.P29 immunization. Overexpression of lncRNA028466 facilitated the production of IL-4, IL-10 and suppressed the production of IFN-γ, IL-2. Furthermore, after transfection with siRNA028466, IL-2 production was facilitated and IL-10 production was suppressed in naive CD4+ T cells. CONCLUSIONS: Immunization with rEg.P29 downregulated the expression of lncRNA028466, which was related to a higher Th1 immune response and a lower Th2 immune response. Our results suggest that lncRNA028466 may be involved in rEg.P29-mediated immune response by regulating cytokine expression of Th1 and Th2.


Subject(s)
Antigens, Helminth/immunology , Cytokines/genetics , Echinococcus granulosus/immunology , Gene Expression Regulation , RNA, Long Noncoding/genetics , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Antibodies, Helminth/blood , Antigens, Helminth/administration & dosage , Antigens, Helminth/genetics , Cytokines/immunology , Female , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Immunization , Mice , Mice, Inbred BALB C , RNA, Long Noncoding/immunology
11.
Nanoscale ; 13(18): 8474-8480, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33984112

ABSTRACT

Two-dimensional field effect transistors (2D FETs) with high mobility semiconducting channels and low contact resistance between the semiconducting channel and the metallic electrodes are highly sought components of future electronics. Recently, 2D boron sheets (borophene) offer a great platform for realizing ideal 2D FETs but stable semiconducting phases still remain much unexplored. Herein, based on first-principles calculations and tight-binding model, we first clarify that α'-boron is the most stable semiconductor phase of boron sheets, while reveal the mechanism of metal-to-semiconductor transition from α- to α'-boron. Then we demonstrate that the carrier mobility in α'- and metastable ß3S-boron should be very high, due to small effective masses of electrons and holes, as a good candidate material for 2D FETs. Considering further the lateral contacts between semiconducting α' and metallic borophene, we find that the α'- and ß3S-boron sheet can form Ohmic contacts with selected metallic boron sheets, without Schottky barrier. The high energetic stability and excellent mobility properties of α'-boron sheet together with its good contact match to metallic borophene electrodes are promising for fully boron-based FETs in the real 2D atomically thin limit.

12.
J Phys Chem Lett ; 12(1): 576-584, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33382274

ABSTRACT

High-performance two-dimensional (2D) field effect transistors (FETs) have a broad application prospect in future electronic devices. The lack of an ideal material system, however, hinders the breakthrough of 2D FETs. Recently, phase engineering offers a promising solution, but it requires both semiconducting and metallic phases of materials. Here we suggest borophenes as ideal systems for 2D FETs by theoretically searching semiconducting phases. Using multiobjective differential optimization algorithms implemented in the IM2ODE package and the first-principles calculations, we have successfully identified 16 new semiconducting borophenes. Among them, the B12-1 borophene is the most stable semiconducting phase, whose total energy is lower than any other known semiconducting borophenes. By considering not only the band alignments but also the lattice matches between semiconducting and metallic borophenes, we then have theoretically proposed several device models of fully boron-sheet-based 2D FETs. Our work provides beneficial ideas and attempts for discovering novel borophene-based 2D FETs.

13.
Adv Mater ; 31(51): e1903448, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31682043

ABSTRACT

The emergence of cesium lead iodide (CsPbI3 ) perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. However, in general they exhibit low power conversion efficiencies (PCEs) because of the existence of defects. A new all-inorganic perovskite material, CsPbI3 :Br:InI3 , is prepared by defect engineering of CsPbI3 . This new perovskite retains the same bandgap as CsPbI3 , while the intrinsic defect concentration is largely suppressed. Moreover, it can be prepared in an extremely high humidity atmosphere and thus a glovebox is not required. By completely eliminating the labile and expensive components in traditional PSCs, the all-inorganic PSCs based on CsPbI3 :Br:InI3 and carbon electrode exhibit PCE and open-circuit voltage as high as 12.04% and 1.20 V, respectively. More importantly, they demonstrate excellent stability in air for more than two months, while those based on CsPbI3 can survive only a few days in air. The progress reported represents a major leap for all-inorganic PSCs and paves the way for their further exploration in order to achieve higher performance.

14.
Nat Mater ; 18(12): 1273-1274, 2019 12.
Article in English | MEDLINE | ID: mdl-31659290
15.
Small ; 15(39): e1901650, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31373741

ABSTRACT

Long-term instability and possible lead contamination are the two main issues limiting the widespread application of organic-inorganic lead halide perovskites. Here a facile and efficient solution-phase method is demonstrated to synthesize lead-free Cs2 SnX6 (X = Br, I) with a well-defined crystal structure, long-term stability, and high yield. Based on the systematic experimental data and first-principle simulation results, Cs2 SnX6 displays excellent stability against moisture, light, and high temperature, which can be ascribed to the unique vacancy-ordered defect-variant structure, stable chemical compositions with Sn4+ , as well as the lower formation enthalpy for Cs2 SnX6 . Additionally, photodetectors based on Cs2 SnI6 are also fabricated, which show excellent performance and stability. This study provides very useful insights into the development of lead-free double perovskites with high stability.

16.
Nano Lett ; 19(1): 408-414, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30532982

ABSTRACT

Single photon emission (SPE) by a solid-state source requires presence of a distinct two-level quantum system, usually provided by point defects. Here we note that a number of qualities offered by novel, two-dimensional materials, their all-surface openness and optical transparence, tighter quantum confinement, and reduced charge screening-are advantageous for achieving an ideal SPE. On the basis of first-principles calculations and point-group symmetry analysis, a strategy is proposed to design paramagnetic defect complex with reduced symmetry, meeting all the requirements for SPE: its electronic states are well isolated from the host material bands, belong to a majority spin eigenstate, and can be controllably excited by polarized light. The defect complex is thermodynamically stable and appears feasible for experimental realization to serve as an SPE-source, essential for quantum computing, with ReMoVS in MoS2 as one of the most practical candidates.

17.
J Phys Chem Lett ; 8(18): 4594-4599, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28885849

ABSTRACT

Two-dimensional (2D) Dirac materials and boron sheets have attracted intensive interest recently. However, 2D Dirac materials remain rare and difficult to be realized experimentally, and 2D boron sheets generally have high dynamical instability. Stimulated by the experimental observation of Dirac cones in nongraphene-like ß12 boron sheets and based on the understanding of boron sheet electronic organization, we theoretically design new 2D Dirac materials ß12-XBeB5 (X = H, F, Cl) with high stability. We confirm ß12-HBeB5 as the global energy minimum among its 2D allotropes based on global structure search methods, a strong indication of its experimental feasibility. Our designed ß12-HBeB5 has not only a high Fermi velocity, but also a Dirac state very robust against extraordinary large tensile strains, an advantage for flexible electronics applications. Our work opens a new avenue to designing feasible 2D Dirac materials and stabilizing borophene sheets.

18.
J Am Chem Soc ; 139(7): 2630-2638, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28112933

ABSTRACT

Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb2+-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb2+ ions into one monovalent M+ and one trivalent M3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

19.
Sci Rep ; 6: 21712, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26880667

ABSTRACT

Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te(cd)(2+) in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.

20.
Nano Lett ; 16(2): 1110-7, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26741149

ABSTRACT

Two-dimensional (2D) semiconductors can be very useful for novel electronic and optoelectronic applications because of their good material properties. However, all current 2D materials have shortcomings that limit their performance. As a result, new 2D materials are highly desirable. Using atomic transmutation and differential evolution global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has shown good electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer control and applied strain, and good air stability as well. Therefore, Pma2-SiS is expected to be a promising 2D material in the field of 2D electronics and optoelectronics. The designing principles demonstrated in identifying these two tantalizing examples have great potential to accelerate the finding of new functional 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...