Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927831

ABSTRACT

This paper presents an eye image segmentation-based computer-aided system for automatic diagnosis of ocular myasthenia gravis (OMG), called OMGMed. It provides great potential to effectively liberate the diagnostic efficiency of expert doctors (the scarce resources) and reduces the cost of healthcare treatment for diagnosed patients, making it possible to disseminate high-quality myasthenia gravis healthcare to under-developed areas. The system is composed of data pre-processing, indicator calculation, and automatic OMG scoring. Building upon this framework, an empirical study on the eye segmentation algorithm is conducted. It further optimizes the algorithm from the perspectives of "network structure" and "loss function", and experimentally verifies the effectiveness of the hybrid loss function. The results show that the combination of "nnUNet" network structure and "Cross-Entropy + Iou + Boundary" hybrid loss function can achieve the best segmentation performance, and its MIOU on the public and private myasthenia gravis datasets reaches 82.1% and 83.7%, respectively. The research has been used in expert centers. The pilot study demonstrates that our research on eye image segmentation for OMG diagnosis is very helpful in improving the healthcare quality of expert doctors. We believe that this work can serve as an important reference for the development of a similar auxiliary diagnosis system and contribute to the healthy development of proactive healthcare services.

2.
Stem Cells Int ; 2019: 8913287, 2019.
Article in English | MEDLINE | ID: mdl-31089336

ABSTRACT

Dental pulp stem cells (DPSCs) have the property of self-renewal and multidirectional differentiation so that they have the potential for future regenerative therapy of various diseases. The latest breakthrough in the biology of stem cells and the development of regenerative biology provides an effective strategy for regenerative therapy. However, in the medium promoting differentiation during long-term passage, DPSCs would lose their differentiation capability. Some efforts have been made to find genes influencing human DPSC (hDPSC) differentiation based on hDPSCs isolated from adults. However, hDPSC differentiation is a very complex process, which involves multiple genes and multielement interactions. The purpose of this study is to detect sets of correlated genes (i.e., gene modules) that are associated to hDPSC differentiation at the crown-completed stage of the third molars, by using weighted gene coexpression network analysis (WGCNA). Based on the gene expression dataset GSE10444 from Gene Expression Omnibus (GEO), we identified two significant gene modules: yellow module (742 genes) and salmon module (9 genes). The WEB-based Gene SeT AnaLysis Toolkit showed that the 742 genes in the yellow module were enriched in 59 KEGG pathways (including Wnt signaling pathway), while the 9 genes in the salmon module were enriched in one KEGG pathway (neurotrophin signaling pathway). There were 660 (7) genes upregulated at P10 and 82 (2) genes downregulated at P10 in the yellow (salmon) module. Our results provide new insights into the differentiation capability of hDPSCs.

3.
Genomics ; 111(3): 500-507, 2019 05.
Article in English | MEDLINE | ID: mdl-29596963

ABSTRACT

Alcohol (EtOH) dosage and exposure time can affect gene expression. However, whether there exists synergistic effect is unknown. Here, we analyzed the hDPSC gene microarray dataset GSE57255 downloaded from Gene Expression Omnibus and found that the interaction between EtOH dosage and exposure time on gene expression are statistically significant for two probes: 201917_s_at near gene SLC25A36 and 217649_at near gene ZFAND5. GeneMania showed that SLC25A36 and ZFAND5 were related to 20 genes, three of which had alcohol-related functions. WebGestalt revealed that the 22 genes were enriched in 10 KEGG pathways, four of which are related to alcoholic diseases. We explored the possible nonlinear interaction effect and got 172 gene probes with significant p-values. However, no significantly enriched pathways based on the 172 probes were detected. Our analyses indicated a possible molecular mechanism that could help explain why alcohol consumption has both deleterious and beneficial effects on human health.


Subject(s)
Ethanol/pharmacology , Stem Cells/metabolism , Alcohol Drinking , Dental Pulp/metabolism , Gene Expression Profiling , Humans , Microarray Analysis , Time
4.
Sci Rep ; 8(1): 9317, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915349

ABSTRACT

Technologies applied for the recognition of facial features in diagnosing certain disorders seem to be promising in reducing the medical burden and improve the efficiency. This pilot study aimed to develop a computer-assisted tool for the pattern recognition of facial features for diagnosing Turner syndrome (TS). Photographs of 54 patients with TS and 158 female controls were collected from July 2016 to May 2017. Finally, photographs of 32 patients with TS and 96 age-matched controls were included in the study that were further divided equally into training and testing groups. The process of automatic classification consisted of image preprocessing, facial feature extraction, feature reduction and fusion, automatic classification, and result presentation. A total of 27 physicians and 21 medical students completed a web-based test including the same photographs used in computer testing. After training, the automatic facial classification system for diagnosing TS achieved a 68.8% sensitivity and 87.5% specificity (and a 67.6% average sensitivity and 87.9% average specificity after resampling), which was significantly higher than the average sensitivity (57.4%, P < 0.001) and specificity (75.4%, P < 0.001) of 48 participants, respectively. The accuracy of this system was satisfactory and better than the diagnosis by clinicians. However, the system necessitates further improvement for achieving a high diagnostic accuracy in clinical practice.


Subject(s)
Computers , Face/pathology , Pattern Recognition, Automated , Physicians , Students, Medical , Turner Syndrome/diagnosis , Age Distribution , Algorithms , Anatomic Landmarks , Case-Control Studies , Child , Female , Humans , Image Processing, Computer-Assisted
5.
Sci Rep ; 8(1): 622, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330528

ABSTRACT

Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Neoplasms/genetics , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Sequence Analysis, DNA
6.
Comput Methods Programs Biomed ; 124: 45-57, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26563686

ABSTRACT

Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach.


Subject(s)
Algorithms , Cataract/pathology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Ophthalmoscopy/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...