Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.096
Filter
1.
Small ; : e2401996, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829026

ABSTRACT

Visible-blind ultraviolet (UV) light detection has a wide application range in scenes like space environment monitoring and medical imaging. To realize miniaturized UV detectors with high performance and high integration ability, new device structures without bulky light filters need to be developed based on advanced mechanisms. Here the unipolar barrier van der Waals heterostructure (UB-vdWH) photodetector is reported that realizes filter-free visible-blind UV detection with good stability, robustness, selectivity, and high detection performance. The UB-vdWH shows a responsivity of 2452 A W-1, a photo on-off ratio of 2.94 × 105 and a detectivity of 1.26 × 1015 Jones as a UV detector, owing to the intentionally designed barrier height that suppresses dark current and photoresponse to visible light during the transport process. The good performance remains intact during 104 test cycles or even under high temperatures, which proves the stability, and robustness of the UB-vdWH, thus shows the huge potential for a wider application range.

2.
Cell Adh Migr ; 18(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38831518

ABSTRACT

In this research, we investigated the role of PIK3R6, a regulatory subunit of PI3Kγ, known for its tumor-promoting properties, in clear cell renal cell carcinoma (CCRCC). Utilizing the UALCAN website, we found PIK3R6 upregulated in CCRCC, correlating with lower survival rates. We compared PIK3R6 expression in CCRCC tumor tissues and adjacent normal tissues using immunohistochemistry. Post RNA interference-induced knockdown of PIK3R6 in 786-O and ACHN cell lines, we performed CCK-8, colony formation, Edu staining, flow cytometry, wound healing, and transwell assays. Results showed that PIK3R6 silencing reduced cell proliferation, migration, and invasion, and induced G0/G1 phase arrest and apoptosis. Molecular analysis revealed decreased CDK4, Cyclin D1, N-cadherin, Vimentin, Bcl-2, p-PI3K and p-AKT, with increased cleaved caspase-3, Bax, and E-cadherin levels in CCRCC cells. Moreover, inhibiting PIK3R6 hindered tumor growth. These findings suggest a significant role for PIK3R6 in CCRCC cell proliferation and metastasis, presenting it as a potential therapeutic target.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Animals , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Gene Knockdown Techniques , Female , Male
3.
Andrology ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831673

ABSTRACT

BACKGROUND: Real-world big data studies on drug-reduced male semen quality are few and far between, with most studies based on animal trials, small scale retrospective studies, or a limited number of pre-market clinical trials. METHODS: This study aimed to identify culprit drugs that reduced male semen quality based on the United States Food and Drug Administration adverse event reporting system. The Medical Dictionary for Regulatory Activities preferred terms and standardized Medical Dictionary for Regulatory Activities queries were used to define reduced male semen quality. Adverse events related to drug-reduced male semen quality were then analyzed by disproportionality analysis using the United States Food and Drug Administration adverse event reporting system data between 2004 and 2023. RESULTS: At the preferred term level, 59 drugs with risk signals were detected to be associated with drug-reduced male semen quality, with the three most frequently reported second-level Anatomical Therapeutic Chemical groups being antineoplastic agents (n = 16, 27.12%), psychoanaleptics (n = 9, 15.25%), and psycholeptics (n = 6, 10.17%). At the standardized Medical Dictionary for Regulatory Activities queries level, the five drugs with the greatest number of cases were finasteride (845 cases, IC025 = 7.72), dutasteride (163 cases, IC025 = 7.22), tamsulosin (148 cases, IC025 = 5.99), testosterone (101 cases, IC025 = 4.08), and valproic acid (54 cases, IC025 = 2.44). Additionally, clinical information about drug-reduced male semen quality is absent from the Summary of Product Characteristics of 41 drugs in our study. CONCLUSIONS: Using the United States Food and Drug Administration adverse event reporting system database, we offer a list of drugs with risk signals for reducing male semen quality. In the future, there is still a need for more studies on drugs whose effects on male semen quality are not fully understood.

4.
Heliyon ; 10(8): e30123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699735

ABSTRACT

Background: Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods: We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results: The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions: Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.

5.
Acupunct Med ; : 9645284241248465, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702866

ABSTRACT

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.

6.
Sci China Life Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38703348

ABSTRACT

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.

7.
Nat Prod Bioprospect ; 14(1): 26, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691189

ABSTRACT

Seven undescribed compounds, including three flavones (1-3), one phenylpropanoid (19), three monoaromatic hydrocarbons (27-29), were isolated from the twigs of Mosla chinensis Maxim together with twenty-eight known compounds. The structures were characterized by HRESIMS, 1D and 2D NMR, and ECD spectroscopic techniques. Compound 20 displayed the most significant activity against A/WSN/33/2009 (H1N1) virus (IC50 = 20.47 µM) compared to the positive control oseltamivir (IC50 = 6.85 µM). Further research on the anti-influenza mechanism showed that compound 20 could bind to H1N1 virus surface antigen HA1 and inhibit the early attachment stage of the virus. Furthermore, compounds 9, 22, 23, and 25 displayed moderate inhibitory effects on the NO expression in LPS inducing Raw 264.7 cells with IC50 values of 22.78, 20.47, 27.66, and 30.14 µM, respectively.

8.
PhytoKeys ; 241: 201-213, 2024.
Article in English | MEDLINE | ID: mdl-38721012

ABSTRACT

Impatiensbeipanjiangensis Jian Xu & H. F. Hu (Balsaminaceae), a new species of Impatienssubg.Clavicarpa discovered in Guizhou, China, is described and illustrated in this study along with its molecular phylogenetic analysis. I.beipanjiangensis is similar to I.liboensis, I.chishuiensis and I.clavigera in morphology, but I.tubulosa has the closest relationship to it. However, there are various ways in which the new species can be easily distinguished from these four species: Inferior nodes swollen rhizoid, pale green and with hooked outer sepals, longer lateral united petals, subovate auricle, deeper lower sepal and shorter spur that is reflexed towards the lower sepal. Furthermore, I.beipanjiangensis is distinguished from other Impatiens species, based on morphological, micromorphological and palynological evidence and molecular data (PP 0.967).

9.
J Infect Dis ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723186

ABSTRACT

Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas Exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C.trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In animal model, Z461X significantly shortened the duration of C. trachomatis infection and prevented pathological damage in mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C. trachomatis infection.

10.
Sci Data ; 11(1): 438, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698068

ABSTRACT

The Bethylidae are the most diverse of Hymenoptera chrysidoid families. As external parasitoids, the bethylids have been widely adopted as biocontrol agents to control insect pests worldwide. Thus far, the genomic information of the family Bethylidae has not been reported yet. In this study, we crystallized into a high-quality chromosome-level genome of ant-like bethylid wasps Sclerodermus sp. 'alternatusi' (Hymenoptera: Bethylidae) using PacBio sequencing as well as Hi-C technology. The assembled S. alternatusi genome was 162.30 Mb in size with a contig N50 size of 3.83 Mb and scaffold N50 size of 11.10 Mb. Totally, 92.85% assembled sequences anchored to 15 pseudo-chromosomes. A total of 10,204 protein-coding genes were annotated, and 23.01 Mb repetitive sequences occupying 14.17% of genome were pinpointed. The BUSCO results showed that 97.9% of the complete core Insecta genes were identified in the genome, while 97.1% in the gene sets. The high-quality genome of S. alternatusi will not only provide valuable genomic information, but also show insights into parasitoid wasp evolution and bio-control application in future studies.


Subject(s)
Genome, Insect , Wasps , Animals , Wasps/genetics , Chromosomes, Insect/genetics
11.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702679

ABSTRACT

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Smoking , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Smoking/epidemiology , Smoking/adverse effects , Periodontitis/genetics , Periodontitis/epidemiology , Severity of Illness Index , Genetic Predisposition to Disease , Periodontal Diseases/genetics , Periodontal Diseases/epidemiology
12.
J Org Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750642

ABSTRACT

A copper(I)-catalyzed protocol is developed for the synthesis of various 2,3-diaroylquinolines starting from achiral ammonium salts and anthranils through [4+1+1] annulation. Using copper(I) chloride as the sole catalyst, this reaction is featured with easily available starting materials, broad substrate scope, good yields and simple reaction conditions.

13.
Nano Lett ; 24(19): 5862-5869, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709809

ABSTRACT

Dynamic vision perception and processing (DVPP) is in high demand by booming edge artificial intelligence. However, existing imaging systems suffer from low efficiency or low compatibility with advanced machine vision techniques. Here, we propose a reconfigurable bipolar image sensor (RBIS) for in-sensor DVPP based on a two-dimensional WSe2/GeSe heterostructure device. Owing to the gate-tunable and reversible built-in electric field, its photoresponse shows bipolarity as being positive or negative. High-efficiency DVPP incorporating front-end RBIS and back-end CNN is then demonstrated. It shows a high recognition accuracy of over 94.9% on the derived DVS128 data set and requires much fewer neural network parameters than that without RBIS. Moreover, we demonstrate an optimized device with a vertically stacked structure and a stable nonvolatile bipolarity, which enables more efficient DVPP hardware. Our work demonstrates the potential of fabricating DVPP devices with a simple structure, high efficiency, and outputs compatible with advanced algorithms.

14.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38703769

ABSTRACT

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Subject(s)
Molecular Dynamics Simulation , Humans , HEK293 Cells , Structure-Activity Relationship , Mutation, Missense , Pharmacogenetics , Phenotype , Organic Cation Transporter 1/genetics , Organic Cation Transporter 1/metabolism , Mutation , Protein Conformation , Biological Transport , Octamer Transcription Factor-1
15.
Sci Data ; 11(1): 492, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744849

ABSTRACT

Surface ozone is an important air pollutant detrimental to human health and vegetation productivity, particularly in China. However, high resolution surface ozone concentration data is still lacking, largely hindering accurate assessment of associated environmental impacts. Here, we collected hourly ground ozone observations (over 6 million records), remote sensing products, meteorological data, and social-economic information, and applied recurrent neural networks to map hourly surface ozone data (HrSOD) at a 0.1° × 0.1° resolution across China during 2015-2020. The coefficient of determination (R2) values in sample-based, site-based, and by-year cross-validations were 0.72, 0.65 and 0.71, respectively, with the root mean square error (RMSE) values being 11.71 ppb (mean = 30.89 ppb), 12.81 ppb (mean = 30.96 ppb) and 11.14 ppb (mean = 31.26 ppb). Moreover, it exhibits high spatiotemporal consistency with ground-level observations at different time scales (diurnal, seasonal, annual), and at various spatial levels (individual sites and regional scales). Meanwhile, the HrSOD provides critical information for fine-resolution assessment of surface ozone impacts on environmental and human benefits.

16.
Ecotoxicol Environ Saf ; 279: 116488, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776782

ABSTRACT

Organophosphorus flame retardants, such as triphenyl phosphate (TPhP), exist ubiquitously in various environments owing to their widespread usage. Potential toxic effects of residual flame retardants on cultured non-fish species are not concerned commonly. TPhP-induced physiological and biochemical effects in an aquatic turtle were evaluated here by systematically investigating the changes in growth and locomotor performance, hepatic antioxidant ability and metabolite, and intestinal microbiota composition of turtle hatchlings after exposure to different TPhP concentrations. Reduced locomotor ability and antioxidant activity were only observed in the highest concentration group. Several metabolic perturbations that involved in amino acid, energy and nucleotide metabolism, in exposed turtles were revealed by metabolite profiles. No significant among-group difference in intestinal bacterial diversity was observed, but the composition was changed markedly in exposed turtles. Increased relative abundances of some bacterial genera (e.g., Staphylococcus, Vogesella and Lawsonella) probably indicated adverse outcomes of TPhP exposure. Despite having only limited impacts of exposure at environmentally relevant levels, our results revealed potential ecotoxicological risks of residual TPhP for aquatic turtles considering TPhP-induced metabolic perturbations and intestinal bacterial changes.

17.
J Food Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778552

ABSTRACT

In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.

18.
Zhen Ci Yan Jiu ; 49(5): 441-447, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764114

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia. METHODS: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group. In the second part of this study, 30 mice were randomized into control, model, EA, EA+Naloxone, EA+OX1R antagonist (SB33486) groups, with 6 mice in each group. Inflammatory pain model was established by subcutaneous injection of 20 µL CFA solution in the left hind paw. EA (2 Hz, 2 mA ) was applied to bilateral PC6 for 20 min, once a day for 5 consecutive days. The mice in the EA+Naloxone and EA+SB33486 groups were intraperitoneally injected with naloxone (10 mg/kg) or SB33486 (15 mg/kg) 15 min before EA intervention on day 5, respectively. Tail-flick method and Von Frey method were used to detect the thermal pain threshold and mechanical pain threshold of mice. Quantitative real-time PCR was used to detect the expression level of ß-endorphin mRNA in periaqueductal gray (PAG) of mice. The expression of OX1R positive cells in the lateral hypothalamic area (LH) and CB1R positive cells in the ventrolateral periaqueductal gray (vlPAG) were detected by immunofluorescence. RESULTS: Compared with the control group, the thermal pain threshold and mechanical pain threshold of the model group were decreased (P<0.001), the expression level of ß-endorphin mRNA in PAG was decreased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were decreased (P<0.05, P<0.001). Compared with the model group, the thermal pain threshold and mechanical pain threshold of the EA group were significantly increased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were increased (P<0.01, P<0.001). Compared with the EA group, the mechanical pain threshold in the EA+SB33486 group was significantly decreased (P<0.01), but there was no significant difference in the mechanical pain threshold between the EA+Naloxone group and EA group, and the numbers of OX1R positive neurons in LH and CB1R positive neurons in vlPAG were decreased in the EA+SB33486 group (P<0.001). CONCLUSIONS: EA at PC6 can achieve analgesic effect on CFA mice by activating the OX1R-CB1R pathway in the brain, and this effect is opioid-independent.


Subject(s)
Acupuncture Points , Brain , Electroacupuncture , Mice, Inbred C57BL , Orexin Receptors , Pain , Animals , Orexin Receptors/metabolism , Orexin Receptors/genetics , Male , Mice , Humans , Pain/metabolism , Pain/genetics , Brain/metabolism , Pain Management , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics
19.
Front Immunol ; 15: 1353695, 2024.
Article in English | MEDLINE | ID: mdl-38765004

ABSTRACT

Objectives: This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods: Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results: Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion: Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Pancreatitis , Signal Transduction , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Rats , Signal Transduction/drug effects , Male , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Protein Interaction Maps
20.
Food Chem ; 454: 139806, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38820635

ABSTRACT

Misuse of chloramphenicol (CAP) can lead to severe food safety issues. Therefore, the accurate and sensitive detection of CAP residues is important for public health. Herein, a convenient and reliable interfacial self-assembly technique was used to form a uniform Au@Ag nanobipyramids (NBPs) film on an ordered SiO2 nanosphere array (SiO2 NS), which served as a Raman-enhanced substrate. In conjunction with a deoxyribonucleic acid enzyme-induced signal amplification strategy, we developed a novel surface-enhanced Raman scattering (SERS) biosensor for the selective and sensitive detection of CAP. The biosensor exhibited a detection limit of 6.42 × 10-13 mol·L-1 and a detection range of 1.0 × 10-12-1.0 × 10-6 mol·L-1. The biosensor could detect CAP in spiked milk samples with a high accuracy, and its recovery rates ranged from 97.88% to 107.86%. The as-developed biosensor with the advantages of high sensitivity and high selectivity offers a new strategy for the rapid, reliable and sensitive detection of CAP, rendering it applicable to food safety control.

SELECTION OF CITATIONS
SEARCH DETAIL
...