Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
2.
Environ Sci Pollut Res Int ; 31(30): 42970-42990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886269

ABSTRACT

Air pollution can cause disease and has become a major global environmental problem. It is currently believed that air pollution may be related to the progression of SSNHL. As a rapidly developing city in recent years, Hefei has serious air pollution. In order to explore the correlation between meteorological variables and SSNHL admissions, we conducted this study. This study investigated the short-term associations between SSNHL patients admitted to the hospital and Hefei climatic variables. The daily data on SSNHL-related hospital admissions and meteorological variables containing mean temperature (T-mean; °C), diurnal temperature range (DTR; °C), atmospheric pressure (AP; Hp), and relative humidity (RH; %), from 2014 to 2021 (2558 days), were collected. A time-series analysis integrating distributed lag non-linear models and generalized linear models was used. PubMed, Embase, Cochrane Library, and Web of Science databases were searched. Literature published up to August 2023 was reviewed to explore the potential impact mechanisms of meteorological factors on SSNHL. The mechanisms were determined in detail, focusing on wind speed, air pressure, temperature, humidity, and air pollutants. Using a median of 50.00% as a baseline, the effect of exceedingly low T-mean in the single-day hysteresis effect model began at a lag of 8 days (RR = 1.032, 95% CI: 1.001 ~ 1.064). High DTR affected the admission rate for SSNHL on lag 0 day. The significance of the effect was the greatest on that day (RR = 1.054, 95% CI: 1.007 ~ 1.104) and then gradually decreased. High and exceedingly high RH affected the admission rate SSNHL on lag 0 day, and these effects lasted for 8 and 7 days, respectively. There were significant associations between all grades of AP and SSNHL. This is the first study to assess the effect of meteorological variables on SSNHL-related admissions in China using a time-series approach. Long-term exposures to high DTR, RH values, low T-mean values, and all AP grades enhance the incidence of SSNHL in residents. Limiting exposure to extremes of ambient temperature and humidity may reduce the number of SSNHL-related hospital visits in the region. It is advisable to maintain a suitable living environment temperature and avoid extreme temperature fluctuations and high humidity. During periods of high air pollution, it is recommended to stay indoors and refrain from outdoor exercise.


Subject(s)
Air Pollution , Meteorological Concepts , China/epidemiology , Humans , Air Pollutants , Hearing Loss, Sensorineural/epidemiology , Temperature , Humidity , Hearing Loss, Sudden/epidemiology
3.
J Neurosci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886059

ABSTRACT

Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggest that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.Significance statement This study provides insight into PL downstream pathways for regulating innate and stress-induced anxiety-like behavior. We reported that PL-mediodorsal thalamic nucleus (MD) projection and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, this study provides definite evidence that MD-projecting PL neurons bidirectionally regulated remote fear memory retrieval and concordant with a role for the PL-MD in anxiety. Moreover, this study is the first demonstration that restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety.

4.
Glia ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801194

ABSTRACT

The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.

5.
Pharmacol Res ; 199: 107042, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142878

ABSTRACT

Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2+ pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.


Subject(s)
Pyramidal Cells , Receptors, Dopamine D2 , Mice , Male , Animals , Receptors, Dopamine D2/metabolism , Pyramidal Cells/physiology , Neurons/metabolism , Prefrontal Cortex/metabolism , Nucleus Accumbens/physiology , Social Behavior
6.
Front Mol Neurosci ; 16: 1195327, 2023.
Article in English | MEDLINE | ID: mdl-37520430

ABSTRACT

Introduction: Recombinant adeno-associated viruses (rAAVs) are widely used in genetic therapeutics. AAV5 has shown superior transduction efficiency, targeting neurons and glial cells in primate brains. Nonetheless, the comprehensive impact of AAV5 transduction on molecular and behavioral alterations remains unexplored. This study focuses on evaluating the effects of AAV5 transduction in the hippocampus, a critical region for memory formation and emotional processes. Methods: In this experiment, fluorescence-activated cell sorting (FACS) was utilized to isolate the mCherry-labeled pyramidal neurons in the hippocampus of CaMkIIα-cre mice following three different doses rAAV5-mCherry infusion after 3 weeks, which were then subjected to RNA sequencing (RNA-seq) to assess gene expression profiles. The cytokines concentration, mRNA expression, and glial response in hippocampi were confirmed by ELASA, digital droplet PCR and immunohistochemistry respectively. Locomotion and anxiety-like behaviors were elevated by Open Field Test and Elevated Plus Maze Test, while the Y-Maze were used to assessed spatial working memory. Recognition memory and fear responses were examined by the Novel Object Recognition Test and Fear Conditioning Test, respectively. Results: We found that 2.88 × 1010 v.g rAAV5 transduction significantly upregulated genes related to the immune response and apoptosis, and downregulated genes associated with mitochondrial function and synaptic plasticity in hippocampal pyramidal neurons, while did not induce neuronal loss and gliosis compared with 2.88 × 109 v.g and 2.88 × 108 v.g. Furthermore, the same doses impaired working memory and contextual fear memory, without effects on locomotion and anxiety-related behaviors. Discussion: Our findings highlight the detrimental impact of high-dose administration compared to median-dose or low-dose, resulting in increased neural vulnerability and impaired memory. Therefore, when considering the expression effectiveness of exogenous genes, it is crucial to also take potential side effects into account in clinical settings. However, the precise molecular mechanisms underlying these drawbacks of high-dose rAAV5-mCherry still require further investigation in future studies.

7.
Carcinogenesis ; 44(8-9): 682-694, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37294054

ABSTRACT

EphB6 belongs to the receptor tyrosine kinase, whose low expression is associated with shorter survival of colorectal cancer (CRC) patients. But the role and mechanism of EphB6 in the progression of CRC need further study. In addition, EphB6 was mainly expressed in intestinal neurons. But how EphB6 is involved in functions of intestinal neurons has not been known. In our study, we constructed a mouse xenograft model of CRC by injecting CMT93 cells into the rectum of EphB6-deficient mice. We found that the deletion of EphB6 in mice promoted tumor growth of CMT93 cells in a xenograft model of CRC, which was independent of changes in the gut microbiota. Interestingly, inhibition of intestinal neurons by injecting botulinum toxin A into rectum of EphB6-deficient mice could eliminate the promotive effect of EphB6 deficiency on tumor growth in the xenograft model of CRC. Mechanically, the deletion of EphB6 in mice promoted the tumor growth in CRC by increasing GABA in the tumor microenvironment. Furthermore, EphB6 deficiency in mice increased the expression of synaptosomal-associated protein 25 in the intestinal myenteric plexus, which mediated the release of GABA. Our study concluded that EphB6 knockout in mice promotes tumor growth of CMT93 cells in a xenograft model of CRC by modulating GABA release. Our study found a new regulating mechanism of EphB6 on the tumor progression in CRC that is dependent on intestinal neurons.


Subject(s)
Cell Communication , Colorectal Neoplasms , Humans , Animals , Mice , Colorectal Neoplasms/metabolism , Intestines/pathology , Neurons/metabolism , Neurons/pathology , gamma-Aminobutyric Acid , Tumor Microenvironment
8.
Neurosci Bull ; 39(3): 409-424, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36738435

ABSTRACT

For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.


Subject(s)
Astrocytes , Neuronal Plasticity , Neuronal Plasticity/physiology , Memory/physiology , Neurons/physiology , Cognition/physiology
9.
Neuropsychopharmacology ; 48(8): 1164-1174, 2023 07.
Article in English | MEDLINE | ID: mdl-36797374

ABSTRACT

Pharmacological manipulation of mGluR5 has showed that mGluR5 is implicated in the pathophysiology of anxiety and mGluR5 has been proposed as a potential drug target for anxiety disorders. Nevertheless, the mechanism underlying the mGluR5 involvement in stress-induced anxiety-like behavior remains largely unknown. Here, we found that chronic restraint stress induced anxiety-like behavior and decreased the expression of mGluR5 in hippocampal CA1. Specific knockdown of mGluR5 in hippocampal CA1 pyramidal neurons produced anxiety-like behavior. Furthermore, both chronic restraint stress and mGluR5 knockdown impaired inhibitory synaptic inputs in hippocampal CA1 pyramidal neurons. Notably, positive allosteric modulator of mGluR5 rescued stress-induced anxiety-like behavior and restored the inhibitory synaptic inputs. These findings point to an essential role for mGluR5 in hippocampal CA1 pyramidal neurons in mediating stress-induced anxiety-like behavior.


Subject(s)
Hippocampus , Pyramidal Cells , Hippocampus/metabolism , Pyramidal Cells/physiology , Anxiety/drug therapy , CA1 Region, Hippocampal
10.
Biol Psychiatry ; 92(12): 984-998, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35787318

ABSTRACT

BACKGROUND: In the neurogenic niches of the adult hippocampus, new functional neurons are continuously generated throughout life, and generation of these neurons has been implicated in learning and memory. Astrocytes, as components of the neurogenic niches, are critical in the regulation of adult hippocampal neurogenesis (AHN). However, little is known about how astrocytes receive and respond to extrinsic cues to regulate AHN. METHODS: By using a transgenic strategy to conditionally delete astrocytic CRHM1 in mice and AAV (adeno-associated virus)-mediated overexpression of astrocytic CHRM1 specifically in the hippocampal dentate gyrus, we systematically investigated the role of astrocytic CHRM1 in the regulation of AHN and the underlying mechanisms using the combined approaches of immunohistochemistry, retrovirus labeling, electrophysiology, primary astrocyte cultures, immunoblotting, and behavioral assays. RESULTS: We report that genetic ablation of CHRM1 in astrocytes led to defects in neural stem cell survival, neuronal differentiation, and maturation and integration of newborn neurons in the dentate gyrus. Astrocytic CHRM1-mediated modulation of AHN was mediated by BDNF (brain-derived neurotrophic factor) signaling. Furthermore, CHRM1 ablation in astrocytes impaired contextual fear memory. These impairments in both AHN and memory were rescued by overexpression of astrocytic CHRM1 in the dentate gyrus. CONCLUSIONS: Our findings reveal a critical role for astrocytes in mediating cholinergic regulation of AHN and memory through CHRM1.


Subject(s)
Astrocytes , Neurogenesis , Mice , Animals , Neurogenesis/physiology , Hippocampus/physiology , Receptors, Muscarinic , Cholinergic Agents , Dentate Gyrus/physiology
11.
Materials (Basel) ; 15(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35744250

ABSTRACT

Concrete structures can be degraded by exposure to environmental stressors such as freeze-thaw cycling and salt corrosion. Magnesium potassium phosphate cement (MKPC) mortar is useful for the rapid repair of such structures but must acquire environmental resistance rapidly. In this study, the freeze-thaw resistance of MKPC mortar specimens of different hydration ages was tested in water and a 5% Na2SO4 solution. The strength, volume deformation, and water absorption rates were compared with those of full-age MKPC mortar specimens (28 d). The phase composition and microscopic morphology of the MKPC mortar specimens before and after corrosion were observed, and the corrosion-resistance mechanism was analyzed. After 225 freeze-thaw cycles in water and sulfate solution, the strength residual rates of the early-age specimen (1 d) were higher than those of the full-age specimen (28 d). The degree of strength attenuation in the 1 d specimen was lower in the sulfate environment than in the water environment. After 225 freeze-thaw cycles, the volume expansion rates of 1 d specimens in water or sulfate were 0.487% and 0.518%, respectively, while those of 28 d specimens were 0.963% and 1.308%. The comparison shows that the 1 d specimen had significantly better deformation resistance under freeze-thaw than the 28 d specimen. After 225 freeze-thaw cycles, the water absorption rates of 1 d specimens were 1.95% and 1.64% in water and sulfate solution, respectively, while those of 28 d specimens were 2.20% and 1.83%. This indicates that freeze-thaw cycling has a greater effect on the pore structure of fully aged mortar than on early-age mortar (1 d). Therefore, MKPC mortar is suitable for the rapid repair of concrete structures in harsh environments. The results form a theoretical basis for winter emergency repair projects. They also further the understanding of the application of MKPC-based materials in extreme environments.

12.
Materials (Basel) ; 15(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591681

ABSTRACT

Concrete facilities in the severe-cold areas of western China (salt lake environments and heavy saline soils) are seriously damaged by the multiple corrosion effects of freeze-thaw cycles and sulfate corrosion. Magnesium phosphate cement (MPC) cement-based material has become an ideal concrete structural component because of its superior performance. Because concrete structural repair materials are used in heavy-corrosion environments, their durability in those environments should also be considered. Regarding the salt-freezing resistance of MPC, the existing studies have all used a NaCl solution as the heat transfer medium. In addition to chlorine salt, sulfate, especially Na2SO4, is also common in typical use environments such as oceans, salt lakes, and groundwater. To evaluate the sulfate freeze-thaw resistance of potassium magnesium phosphate cement (MKPC) mortar, in this study the strength development, weight loss, and water absorption of MKPC mortar specimens subjected to different freeze-thaw cycles were tested and compared with those for Portland cement (P.O) mortar specimens of the same strength grade. The results showed that the P.O mortar specimen completely lost its strength after 75 cycles of rapid water freezing and thawing and 50 cycles of sodium sulfate solution (5%) freezing and thawing. However, the residual strength rating of the MKPC mortar specimen after 75 cycles of water freezing and thawing and 100 cycles of sodium sulfate solution freezing and thawing was higher than 75%. After 50 rapid freeze-thaw cycles in water and a 5% Na2SO4 solution, the P.O mortar specimen's mass loss exceeded the 5% failure standard, whereas the mass loss of the MKPC mortar specimens was much less than 5%. Before the freeze-thaw cycles, the water absorption of the P.O mortar specimen was close to 8 times that of the MKPC mortar specimen, and after 50 water freeze-thaw cycles and 25 sulfate solution freeze-thaw cycles, the water absorption reached 4.88% and 5.68%, respectively. However, after 225 freeze-thaw cycles in water and the sulfate solution, the water absorption rates of MKPC mortar specimens were 2.91% and 2.51% respectively. The test and analysis results show that the freeze-thaw resistance of MKPC mortar was much higher than that of Portland cement mortar specimens. Those results provide a prerequisite for applying and expanding the use of MKPC-based materials in severe-cold areas of western China (salt lake and heavily saline soil environments).

13.
Biol Psychiatry ; 92(3): 179-192, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35489874

ABSTRACT

BACKGROUND: Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS: By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS: Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS: Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.


Subject(s)
Habenula , Adenosine Triphosphate/metabolism , Animals , Depression/etiology , Dorsal Raphe Nucleus/metabolism , Habenula/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prefrontal Cortex/metabolism
14.
Mol Psychiatry ; 27(2): 896-906, 2022 02.
Article in English | MEDLINE | ID: mdl-34697452

ABSTRACT

Neuroplasticity in the medial prefrontal cortex (mPFC) is essential for fear extinction, the process of which forms the basis of the general therapeutic process used to treat human fear disorders. However, the underlying molecules and local circuit elements controlling neuronal activity and concomitant induction of plasticity remain unclear. Here we show that sustained plasticity of the parvalbumin (PV) neuronal network in the infralimbic (IL) mPFC is required for fear extinction in adult male mice and identify the involvement of neuregulin 1-ErbB4 signalling in PV network plasticity-mediated fear extinction. Moreover, regulation of fear extinction by basal medial amygdala (BMA)-projecting IL neurons is dependent on PV network configuration. Together, these results uncover the local molecular circuit mechanisms underlying mPFC-mediated top-down control of fear extinction, suggesting alterative therapeutic approaches to treat fear disorders.


Subject(s)
Extinction, Psychological , Fear , Animals , Extinction, Psychological/physiology , Fear/physiology , Male , Mice , Neuregulin-1 , Neuronal Plasticity/physiology , Parvalbumins , Prefrontal Cortex/physiology , Receptor, ErbB-4
15.
Mol Psychiatry ; 27(2): 873-885, 2022 02.
Article in English | MEDLINE | ID: mdl-34642458

ABSTRACT

Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.


Subject(s)
Astrocytes , Brain-Derived Neurotrophic Factor , Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Neurons/metabolism
17.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34263737

ABSTRACT

Anxiety-related disorders can be treated by cognitive therapies and transcranial magnetic stimulation, which involve the medial prefrontal cortex (mPFC). Subregions of the mPFC have been implicated in mediating different and even opposite roles in anxiety-related behaviors. However, precise causal targets of these top-down connections among diverse possibilities have not been established. Here, we show that the lateral septum (LS) and the central nucleus of the amygdala (CeA) represent 2 direct targets of the infralimbic cortex (IL), a subregion of the mPFC that modulates anxiety and fear. Two projections were unexpectedly found to exert opposite effects on the anxious state and learned freezing: the IL-LS projection promoted anxiety-related behaviors and fear-related freezing, whereas the IL-CeA projection exerted anxiolytic and fear-releasing effects for the same features. Furthermore, selective inhibition of corresponding circuit elements showed opposing behavioral effects compared with excitation. Notably, the IL-CeA projection implemented top-down control of the stress-induced high-anxiety state. These results suggest that distinct IL outputs exert opposite effects in modulating anxiety and fear and that modulating the excitability of these projections with distinct strategies may be beneficial for the treatment of anxiety disorders.


Subject(s)
Amygdala/physiopathology , Anxiety/physiopathology , Fear , Neural Pathways/physiopathology , Prefrontal Cortex/physiopathology , Animals , Humans , Mice
18.
Nat Commun ; 12(1): 3321, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059669

ABSTRACT

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. The mechanisms underlying ASD are unclear. Astrocyte alterations are noted in ASD patients and animal models. However, whether astrocyte dysfunction is causal or consequential to ASD-like phenotypes in mice is unresolved. Type 2 inositol 1,4,5-trisphosphate 6 receptors (IP3R2)-mediated Ca2+ release from intracellular Ca2+ stores results in the activation of astrocytes. Mutations of the IP3R2 gene are associated with ASD. Here, we show that both IP3R2-null mutant mice and astrocyte-specific IP3R2 conditional knockout mice display ASD-like behaviors, such as atypical social interaction and repetitive behavior. Furthermore, we show that astrocyte-derived ATP modulates ASD-like behavior through the P2X2 receptors in the prefrontal cortex and possibly through GABAergic synaptic transmission. These findings identify astrocyte-derived ATP as a potential molecular player in the pathophysiology of ASD.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/pathology , Autism Spectrum Disorder/pathology , Calcium Signaling/physiology , Inositol 1,4,5-Trisphosphate Receptors/deficiency , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Behavior, Animal , Calcium/metabolism , Disease Models, Animal , GABAergic Neurons/physiology , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Mice , Mice, Knockout , Prefrontal Cortex/cytology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Synaptic Transmission/physiology
19.
Neurosci Bull ; 37(9): 1303-1313, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34089507

ABSTRACT

Food deprivation can rescue obesity and overweight-induced mood disorders, and promote mood performance in normal subjects. Animal studies and clinical research have revealed the antidepressant-like effect of calorie restriction, but little is known about the mechanism of calorie restriction-induced mood modification. Previous studies have found that astrocytes modulate depressive-like behaviors. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant isoform in mediating astrocyte Ca2+ signals and its genetic knockout mice are widely used to study astrocyte function in vivo. In this study, we showed that deletion of IP3R2 blocked the antidepressant-like effect induced by calorie restriction. In vivo microdialysis experiments demonstrated that calorie restriction induced an increase in ATP level in the medial prefrontal cortex (mPFC) in naïve mice but this effect disappeared in IP3R2-knockout mice, suggesting a role of astrocytic ATP in the calorie restriction-induced antidepressant effect. Further experiments showed that systemic administration and local infusion of ATP into the mPFC induced an antidepressant effect, whereas decreasing ATP by Apyrase in the mPFC blocked calorie restriction-induced antidepressant regulation. Together, these findings support a role for astrocytic ATP in the antidepressant-like effect caused by calorie restriction.


Subject(s)
Caloric Restriction , Prefrontal Cortex , Adenosine Triphosphate , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice , Mice, Knockout
20.
Transl Psychiatry ; 11(1): 241, 2021 04 24.
Article in English | MEDLINE | ID: mdl-33895779

ABSTRACT

Thalamic reticular nucleus (TRN) is a group of inhibitory neurons surrounding the thalamus. Due to its important role in sensory information processing, TRN is considered as the target nucleus for the pathophysiological investigation of schizophrenia and autism spectrum disorder (ASD). Prepulse inhibition (PPI) of acoustic startle response, a phenomenon that strong stimulus-induced startle reflex is reduced by a weaker prestimulus, is always found impaired in schizophrenia and ASD. But the role of TRN in PPI modulation remains unknown. Here, we report that parvalbumin-expressing (PV+) neurons in TRN are activated by sound stimulation of PPI paradigm. Chemogenetic inhibition of PV+ neurons in TRN impairs PPI performance. Further investigations on the mechanism suggest a model of burst-rebound burst firing in TRN-auditory thalamus (medial geniculate nucleus, MG) circuitry. The burst firing is mediated by T-type calcium channel in TRN, and rebound burst firing needs the participation of GABAB receptor in MG. Overall, these findings support the involvement of TRN in PPI modulation.


Subject(s)
Autism Spectrum Disorder , Prepulse Inhibition , Acoustics , Humans , Reflex, Startle , Thalamic Nuclei
SELECTION OF CITATIONS
SEARCH DETAIL
...