Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610270

ABSTRACT

The robotic drilling of assembly holes is a crucial process in aerospace manufacturing, in which measuring the normal of the workpiece surface is a key step to guide the robot to the correct pose and guarantee the perpendicularity of the hole axis. Multiple laser displacement sensors can be used to satisfy the portable and in-site measurement requirements, but there is still a lack of accurate analysis and layout design. In this paper, a simplified parametric method is proposed for multi-sensor normal measurement devices with a symmetrical layout, using three parameters: the sensor number, the laser beam slant angle, and the laser spot distribution radius. A normal measurement error distribution simulation method considering the random sensor errors is proposed. The measurement error distribution laws at different sensor numbers, the laser beam slant angle, and the laser spot distribution radius are revealed as a pyramid-like region. The influential factors on normal measurement accuracy, such as sensor accuracy, quantity and installation position, are analyzed by a simulation and verified experimentally on a five-axis precision machine tool. The results show that increasing the laser beam slant angle and laser spot distribution radius significantly reduces the normal measurement errors. With the laser beam slant angle ≥15° and the laser spot distribution radius ≥19 mm, the normal measurement error falls below 0.05°, ensuring normal accuracy in robotic drilling.

2.
Am J Med Sci ; 367(6): 382-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431191

ABSTRACT

BACKGROUND: Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS: Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor ß1 (TGFß1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS: Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION: Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.


Subject(s)
Autophagy-Related Proteins , Autophagy , Calcitriol , Hepatic Stellate Cells , Liver Cirrhosis , Receptors, Calcitriol , Autophagy/drug effects , Animals , Calcitriol/pharmacology , Calcitriol/therapeutic use , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Male , Humans , Carbon Tetrachloride/toxicity , Mice, Inbred C57BL , Disease Progression , Transforming Growth Factor beta1/metabolism
3.
Heliyon ; 10(4): e25817, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375281

ABSTRACT

Objective: To investigate and analyse the quality of life (QoL) of patients with chronic kidney disease (CKD) undergoing maintenance haemodialysis (MHD), explore influencing factors and provide a basis for formulating corresponding intervention measures. Methods: A cross-sectional study was conducted on 190 patients with CKD undergoing MHD in hospital between March 2021 and March 2022. A general information questionnaire and the Kidney Disease Quality of Life Short Form were used to collect data. The QoL scores of patients with CKD undergoing MHD were calculated and compared by t-test and analysis of variance. Pearson correlation analysis was used to analyse the correlation between QoL scores and related factors. Stepwise multiple linear regression analysis was used to screen the influencing factors of QoL. Results: The total score of QoL of patients with CKD undergoing MHD was 59.32 ± 11.67, and the scores of physical component summary, mental component summary and kidney disease component summary were 50.21 ± 9.32, 48.76 ± 10.81 and 66.34 ± 12.76, respectively. The QoL scores of patients with CKD undergoing MHD were significantly different in age, education level, marital status, employment status, monthly income, dialysis frequency, dialysis duration and complications (p < 0.05). The QoL scores were positively correlated with education level, monthly income and dialysis frequency, and negatively correlated with age, dialysis duration and blood phosphorus level (p < 0.05). Stepwise multiple linear regression analysis showed that age, education level, employment status, dialysis frequency, dialysis duration and blood phosphorus level were the main influencing factors of QoL (p < 0.05). Conclusion: The QoL of patients with CKD undergoing MHD is low, and it is affected by multiple factors. We suggest that healthcare workers should pay attention to the physical and mental health of patients with CKD undergoing MHD, provide individualised and comprehensive nursing interventions and improve their QoL.

4.
FASEB J ; 38(4): e23473, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334462

ABSTRACT

Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-ß, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.


Subject(s)
Endothelial Cells , Single-Cell Gene Expression Analysis , Mice , Animals , Liver , Aging/genetics , Aging/metabolism , Signal Transduction/physiology , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism
5.
Small ; 20(7): e2306132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37800612

ABSTRACT

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

6.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069199

ABSTRACT

The liver is the primary organ accountable for complex physiological functions, including lipid metabolism, toxic chemical degradation, bile acid synthesis, and glucose metabolism. Liver function homeostasis is essential for the stability of bodily functions and is involved in the complex regulation of the balance between cell proliferation and cell death. Cell proliferation-halting mechanisms, including autophagy and senescence, are implicated in the development of several liver diseases, such as cholestasis, viral hepatitis, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Among various cell death mechanisms, autophagy is a highly conserved and self-degradative cellular process that recycles damaged organelles, cellular debris, and proteins. This process also provides the substrate for further metabolism. A defect in the autophagy machinery can lead to premature diseases, accelerated aging, inflammatory state, tumorigenesis, and cellular senescence. Senescence, another cell death type, is an active player in eliminating premalignant cells. At the same time, senescent cells can affect the function of neighboring cells by secreting the senescence-associated secretory phenotype and induce paracrine senescence. Autophagy can promote and delay cellular senescence under different contexts. This review decodes the roles of autophagy and senescence in multiple liver diseases to achieve a better understanding of the regulatory mechanisms and implications of autophagy and senescence in various liver diseases.


Subject(s)
Aging , Non-alcoholic Fatty Liver Disease , Humans , Aging/metabolism , Cellular Senescence/genetics , Autophagy/genetics
7.
Plant Dis ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127629

ABSTRACT

Astragalus mongholicus Bge. [A. membranaceus Bge. var. mongholicus (Bge.) Hsiao] is a highly valuable perennial medicinal plant mainly distributed in China, whose dry roots are known as Huangqi in traditional Chinese medicine for reinforcing vital energy, strengthening superficial resistance, and promoting tissue regeneration (Lin et al. 2000). A. mongholicus roots of high quality are produced in Northwest and North China. Since July 2021, powdery mildew outbreaks happened annually on the leaves of A. mongholicus in a plantation (123° 56' 40'' E, 47° 22' 20'' N) in Qiqihar city, Heilongjiang Province, China. Disease incidence reached 100% by October (Fig. 1A-C), causing severe impairment of growth. Powdery mildew spots of circular or irregular shapes emerged on upper surface of leaf, resulting in plentiful lesion specks. Dense white hyphae appeared chaotically intertwined. Hyphae were hyaline and highly flexuous, 5.3 - 10.7 µm in diameter (n = 20). Chasmothecia were globose or slightly ovoid-shaped and turned dark brown when matured. Chasmothecia (diameter: 135.2 - 222.9 µm, n = 20) existed abundantly on the diseased leaves in the fields. Conidiophores were 89.0 - 129.9 µm in length (n = 20) and composed of one cylindrical, straight foot cell, followed by two cells and one to three conidia. Conidia were slim ellipsoid-shaped, occasionally ovoid-shaped, measuring 14.6 - 24.7 µm by 6.4 to10.4 µm, length/width ratio was 1.8 - 3.0 (n = 30). Hyphal appressoria were nipple-shaped and appeared in singular, occasionally in pairs. Unbranched germ tube emerged reaching out of the germinating conidia while forming an acute angle with the long axis. Comprehensively, the pathogen exhibited micro-morphology of the genus Erysiphe. For molecular identification, pathogen was carefully scraped off diseased leaves for DNA extraction. We used the DNA samples of three biological replicates for the sequencing of the ITS rDNA fragment (primers by (White et al. 1990). All the samples resulted in an identical ITS sequence (deposited in GenBank as OQ390098.1). It displayed 99.83% identity with OP806835.1 of an E. astragali voucher collected in Iran (Fig. 1D-M, O). Hence, our pathogen was identified as an E. astragali stain. Additionally, we amplified the Mcm7 sequence (using primers by (Ellingham et al. 2019), deposited as OQ397582.1). We propagated 40-day-old A. mongholicus plants via germinating seeds in pot soil and performed pathogenicity tests. Firstly, we incubated detached healthy leaves of propagated plants with severely symptomatic leaves collected from the fields in petri dishes under saturated moisture content and room temperature. Powdery mildew symptoms emerged on each healthy leaf (n = 5) after two weeks. Further, we infected healthy plants (n = 5) by gently pressing and rubbing symptomatic leaves on each healthy leaf, and kept them in a greenhouse (24 ℃, 80% humidity, 16/8-hour light/dark cycle). After a month, symptoms emerged on a number of leaves of each infected plant. We performed micromorphology observation (Fig. 1N-P) and ITS sequencing to confirm that the results fulfilled Koch's postulates. Powdery mildew caused by E. astragali on A. strictus in Tibet (Wang and Jiang 2023) and on A. scaberrimus in Inner Mongolia (Sun et al. 2023) have been reported. Here we report powdery mildew caused by E. astragali on Astragalus mongholicus for the first time. These Astragalus spp. are all acknowledged to have medicinal values in China but their usages are quite different.

8.
Int J Biol Sci ; 19(15): 4726-4743, 2023.
Article in English | MEDLINE | ID: mdl-37781511

ABSTRACT

Glycine decarboxylase (GLDC) is one of the core enzymes for glycine metabolism, and its biological roles in prostate cancer (PCa) are unclear. First, we found that GLDC plays a central role in glycolysis in 540 TCGA PCa patients. Subsequently, a metabolomic microarray showed that GLDC enhanced aerobic glycolysis in PCa cells, and GLDC and its enzyme activity enhanced glucose uptake, lactate production and lactate dehydrogenase (LDH) activity in PCa cells. Next, we found that GLDC was highly expressed in PCa, was directly regulated by hypoxia-inducible factor (HIF1-α) and regulated downstream LDHA expression. In addition, GLDC and its enzyme activity showed a strong ability to promote the migration and invasion of PCa both in vivo and in vitro. Furthermore, we found that the GLDC-high group had a higher TP53 mutation frequency, lower CD8+ T-cell infiltration, higher immune checkpoint expression, and higher immune exclusion scores than the GLDC-low group. Finally, the GLDC-based prognostic risk model by applying LASSO Cox regression also showed good predictive power for the clinical characteristics and survival in PCa patients. This evidence indicates that GLDC plays crucial roles in glycolytic metabolism, invasion and metastasis, and immune escape in PCa, and it is a potential therapeutic target for prostate cancer.


Subject(s)
Glycolysis , Prostatic Neoplasms , Male , Humans , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Glycolysis/genetics , Prostatic Neoplasms/genetics
10.
Genes Dis ; 10(5): 1883-1893, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37492717

ABSTRACT

Cellular metabolism-induced epigenetic regulation is essential for the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) is emerging as a key point of intersection between cellular metabolism and epigenetic regulation and has a central role in various physiological and pathological processes. NNMT catalyzes the methylation of nicotinamide (NAM) using the universal methyl donor S-adenosyl methionine (SAM) to yield S-adeno-syl-L-homocysteine (SAH) and N1-methylnicotinamide (MNAM), directly linking methylation balance with nicotinamide adenosine dinucleotide (NAD+) contents. NNMT acts on either the SAM-methylation balance or both NAD+ metabolism, depending on the tissue involved or pathological settings where metabolic demand is increased. Under physiological conditions, the liver act as an essential metabolic organ with abundant NNMT expression, while NNMT hepatic function is not mediated by its methyltransferase activity due to other major methyltransferases such as glycine N-methyltransferase (GNMT) in the liver. However, hepatic NNMT, as well as its metabolite is improperly regulated and linked to the worse pathological states in liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and hepatocellular carcinoma (HCC), suggesting a potential role in the process of liver diseases. In this review, we summarize how NNMT regulates cell methylation balance and NAD metabolism, and extensively outline the current knowledge concerning the functions of NNMT in hepatic metabolism including glucose, lipid and energy, with a specific focus on the contribution of NNMT to the pathophysiology of liver-related diseases. NNMT is involved in the development and progression of liver diseases. Understanding the complex NNMT regulatory network and its effects on pathogenesis could provide new therapeutic strategies in the context of liver diseases.

11.
J Biochem Mol Toxicol ; 37(9): e23402, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37341435

ABSTRACT

The drug resistance of single-target therapy has gradually become an intractable clinical problem. Combination therapy may be an effective treatment to overcome or postpone drug resistance in cancer. Herein, we discussed the synergistic effect of transforming acidic coiled-coil containing protein 3 (TACC3) suppression and cyclin-dependent kinase 1 (CDK1) in hepatocellular carcinoma (HCC). The Cancer Genome Atlas database and bioinformatics methods were implemented to analyze the expression of CDK1 and TACC3, and predict the biological function of TACC3-related genes in HCC. In addition, in vitro experiments, including cell counting kit 8, transwell and flow cytometry were utilized to evaluate cell proliferation, migration, invasion, cell cycle arrest and apoptosis of HCC cells. Our results demonstrated that TACC3 is an unfavorable and independent prognostic factor to predict poor overall survival (OS) in HCC patients. Genetic inhibition of TACC3 exhibited a remarkable antineoplastic activity of HCC cell lines. Bioinformatic prediction proposed that CDK1 may be the main regulator of TACC3-related genes in HCC. In vitro experimental measurements suggested that a combination of si-TACC3 and CDK1 inhibitor synergistically inhibited cell proliferation and migration, and induced G2 cell cycle arrest and apoptosis of HepG2 or MHCC97H cells. In conclusion, our results revealed a prospective dual-target, TACC3 and CDK1, therapeutic strategy to improve the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , CDC2 Protein Kinase , Microtubule-Associated Proteins/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Prognosis , Prospective Studies , Cell Line , Cell Proliferation , Cell Line, Tumor
12.
ACS Appl Mater Interfaces ; 15(19): 23501-23511, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37134325

ABSTRACT

The heteroepitaxy of high-quality aluminum nitride (AlN) with low stress is essential for the development of energy-efficient deep ultraviolet light-emitting diodes (DUV-LEDs). In this work, we realize that quasi-van der Waals epitaxy growth of a stress-released AlN film with low dislocation density on hexagonal boron nitride (h-BN)/sapphire suffered from high-temperature annealing (HTA) treatment and demonstrate its application in a DUV-LED. It is revealed that HTA effectively improves the crystalline quality and surface morphology of monolayer h-BN. Guided by first-principles calculations, we demonstrate that h-BN can enhance lateral migration of Al atoms due to the ability to lower the surface migration barrier (less than 0.14 eV), resulting in the rapid coalescence of the AlN film. The HTA h-BN is also proved to be efficient in reducing the dislocation density and releasing the large strain in the AlN epilayer. Based on the low-stress and high-quality AlN film on HTA h-BN, the as-fabricated 290 nm DUV-LED exhibits 80% luminescence enhancement compared to that without h-BN, as well as good reliability with a negligible wavelength shift under high current. These findings broaden the applications of h-BN in favor of III-nitride and provide an opportunity for further developing DUV optoelectronic devices on large mismatched heterogeneous substrates.

13.
Transl Cancer Res ; 12(3): 572-584, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37033345

ABSTRACT

Background: Sphingosine kinase 1 (SPHK1) is a key enzyme that catalyzes the phosphorylation of sphingosine. Recent studies reported SPHK1 to be associated with renal cell carcinoma (RCC) progression by inducing targeted therapy resistance. However, the expression and the clinical significance of SPHK1 on RCC in those having received targeted therapy have not been elucidated. The present study explored the expression of SPHK1 in RCC tissues from targeted therapy recipients, the correlation of SPHK1 with clinicopathological parameters, and the effect of SPHK1 on RCC patient prognosis. Methods: Differential gene expression analysis of RCC treated with and without targeted therapy was performed. The correlations of SPHK1 expression with clinical parameters of RCC were examined. Gene set enrichment analysis (GSEA) was performed to clarify the potential role of SPHK1 associated with targeted therapy resistance. The value of SPHK1 as a diagnostic marker for RCC was also evaluated. The Kaplan-Meier method was applied to analyze the correlation between SPHK1 expression and patient survival rate by using the clinical data from patients with RCC. Results: Significant overexpression of SPHK1 was detected in RCC treated with targeted therapy. SPHK1 expression was closely correlated with RCC progression-related clinicopathological parameters. Therefore, elevated SPHK1 could effectively diagnose RCC and distinguish RCC with an advanced clinical stage and a high pathological grade. SPHK1 was associated with the stemness of RCC cells via the activation of the Wnt, Hedgehog, or Notch signaling pathways in targeted drug-treated or untreated RCC. Survival analysis of a large cohort of RCC samples indicated overexpression of SPHK1 to be inversely correlated with the overall and disease-free survival of patients with RCC. Conclusions: Our study indicated that SPHK1 associated with targeted therapy resistance could serve as a potential prognostic marker and a valuable biomarker of response to angiogenic agents in RCC.

14.
Asian J Androl ; 25(4): 474-483, 2023.
Article in English | MEDLINE | ID: mdl-36537377

ABSTRACT

Cyclophosphamide-induced testosterone deficiency (CPTD) during the treatment of cancers and autoimmune disorders severely influences the quality of life of patients. Currently, several guidelines recommend patients suffering from CPTD receive testosterone replacement therapy (TRT). However, TRT has many disadvantages underscoring the requirement for alternative, nontoxic treatment strategies. We previously reported bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exos) could alleviate cyclophosphamide (CP)-induced spermatogenesis dysfunction, highlighting their role in the treatment of male reproductive disorders. Therefore, we further investigated whether BMSCs-exos affect autophagy and testosterone synthesis in Leydig cells (LCs). Here, we examined the effects and probed the molecular mechanisms of BMSCs-exos on CPTD in vivo and in vitro by detecting the expression levels of genes and proteins related to autophagy and testosterone synthesis. Furthermore, the testosterone concentration in serum and cell-conditioned medium, and the photophosphorylation protein levels of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were measured. Our results suggest that BMSCs-exos could be absorbed by LCs through the blood-testis barrier in mice, promoting autophagy in LCs and improving the CP-induced low serum testosterone levels. BMSCs-exos inhibited cell death in CP-exposed LCs, regulated the AMPK-mTOR signaling pathway to promote autophagy in LCs, and then improved the low testosterone synthesis ability of CP-induced LCs. Moreover, the autophagy inhibitor, 3-methyladenine (3-MA), significantly reversed the therapeutic effects of BMSCs-exos. These findings suggest that BMSCs-exos promote LC autophagy by regulating the AMPK-mTOR signaling pathway, thereby ameliorating CPTD. This study provides novel evidence for the clinical improvement of CPTD using BMSCs-exos.


Subject(s)
AMP-Activated Protein Kinases , Exosomes , Mice , Male , Animals , AMP-Activated Protein Kinases/metabolism , Exosomes/metabolism , Leydig Cells/metabolism , Quality of Life , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Autophagy/physiology , Testosterone/metabolism , Mammals
15.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203352

ABSTRACT

Aging is a biological process with a gradual decline in functional capacity, and this process often enhances the risk of chronic disease morbidity and mortality. With advanced age, the immune system undergoes a process of remodeling that can lead to a chronic inflammatory state, termed immunosenescence and inflammaging, respectively. Immunosenescence is accompanied by changes in the number, proportion, and functional capacity of the innate immune cells. The accumulation of dysfunctional immune cells and the presence of low-grade inflammation can lead to organ damage and expedite the aging process. The liver, crucial in regulating the body's metabolism and immune function, is not exempt from these effects. Age-related modifications affect its immune function and regenerative abilities, potentially increasing the prevalence of age-related liver diseases. While aging's impact on the liver is relatively less severe compared to other organ systems, it still experiences an infiltration of innate immune cells and heightened inflammation levels. This review will elaborate on how aging affects the liver's innate immune cells, such as neutrophils, macrophages, dendritic cells, mast cells, and innate lymphoid cells. It will also explore potential strategies for delaying immunosenescence to alleviate these age-related changes.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Liver , Inflammation
16.
Front Immunol ; 13: 946209, 2022.
Article in English | MEDLINE | ID: mdl-36569837

ABSTRACT

Background: Plasma cells as an important component of immune microenvironment plays a crucial role in immune escape and are closely related to immune therapy response. However, its role for prostate cancer is rarely understood. In this study, we intend to investigate the value of a new plasma cell molecular subtype for predicting the biochemical recurrence, immune escape and immunotherapy response in prostate cancer. Methods: Gene expression and clinicopathological data were collected from 481 prostate cancer patients in the Cancer Genome Atlas. Then, the immune characteristics of the patients were analyzed based on plasma cell infiltration fractions. The unsupervised clustering based machine learning algorithm was used to identify the molecular subtypes of the plasma cell. And the characteristic genes of plasma cell subtypes were screened out by three types of machine learning models to establish an artificial neural network for predicting plasma cell subtypes. Finally, the prediction artificial neural network of plasma cell infiltration subtypes was validated in an independent cohort of 449 prostate cancer patients from the Gene Expression Omnibus. Results: The plasma cell fraction in prostate cancer was significantly decreased in tumors with high T stage, high Gleason score and lymph node metastasis. In addition, low plasma cell fraction patients had a higher risk of biochemical recurrence. Based on the differential genes of plasma cells, plasma cell infiltration status of PCa patients were divided into two independent molecular subtypes(subtype 1 and subtype 2). Subtype 1 tends to be immunosuppressive plasma cells infiltrating to the PCa region, with a higher likelihood of biochemical recurrence, more active immune microenvironment, and stronger immune escape potential, leading to a poor response to immunotherapy. Subsequently, 10 characteristic genes of plasma cell subtype were screened out by three machine learning algorithms. Finally, an artificial neural network was constructed by those 10 genes to predict the plasma cell subtype of new patients. This artificial neural network was validated in an independent validation set, and the similar results were gained. Conclusions: Plasma cell infiltration subtypes could provide a potent prognostic predictor for prostate cancer and be an option for potential responders to prostate cancer immunotherapy.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Male , Humans , Plasma Cells , Algorithms , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Immunotherapy , Tumor Microenvironment/genetics
17.
Huan Jing Ke Xue ; 43(10): 4590-4600, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224144

ABSTRACT

To understand the enrichment factors and pollution levels of heavy metals in agricultural soils in the semi-arid region of Hainan island, 1818 surface soil samples were collected in Gancheng Town and analyzed for their heavy metal contents and physicochemical composition. Correlation analysis was used to determine the heavy metal enrichment factors. The geo-accumulation index (Igeo), comprehensive ecological risk index (RI), and hazard index (HI), as well as carcinogenic risk (CR), were used to assess the degree of pollution and health risk. Positive matrix factorization (PMF) was used to determine the primary sources of pollution and priority sources. The average values of heavy metal contents in the topsoil were 22.7, 0.128, 33.4, 14.5, 0.032, 9.32, 32.5, and 43.3 mg·kg-1 for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. With the exception of Zn, the concentrations of other heavy metals in the topsoil were higher than the soil background values of Hainan, showing different degrees of heavy metal accumulation effect. The Igeo revealed that the major pollutant element in soils was As, followed by Cd and Cu. The RI showed that the proportion of soil samples that were high-risk level or worse was 29.4% of the total number of samples, among which As was the major source of risk. The health risk assessment results indicated that As, Cr, and Ni exposure presented carcinogenic risk for children with high CR values. Based on PMF, four major sources of heavy metals were identified in the study area. Hg was derived mainly from industrial sources, and As was closely associated with agricultural activities. Ni, Cu, Cr, and Zn were related to soil parent materials. Pb and Cd were associated with agricultural activities and traffic emissions. The PMF models combined with correlation analysis were useful for estimating the source apportionment of heavy metals in soils.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Carcinogens/analysis , Child , China , Environmental Monitoring/methods , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis
18.
Front Oncol ; 12: 929838, 2022.
Article in English | MEDLINE | ID: mdl-36059676

ABSTRACT

Background: ACO1 and IREB2 are two homologous cytosolic regulatory proteins, which sense iron levels and change iron metabolism-linked molecules. These two genes were noticeably decreased in kidney renal clear cell carcinoma (KIRC), which confer poor survival. Meanwhile, there is a paucity of information about the mechanisms and clinical significance of ACO1 and IREB2 downregulation in renal cancers. Methods: The expression profiles of ACO1 and IREB2 were assessed using multiple public data sets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify cohorts for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. The correlations of ACO1 and IREB2 with ferroptosis were further evaluated in The Cancer Genome Atlas (TCGA)-KIRC database. Tumor immune infiltration was analyzed using the CIBERSORT, TIMER, and GEPIA data resources. ACO1 antagonist sodium oxalomalate (OMA) and IREB2 inhibitor sodium nitroprusside (SNP) was used to treat renal cancer ACHN cells together with sorafenib. Results: KIRC patients with low ACO1 or IREB2 contents exhibited a remarkably worse survival rate in contrast with those with high expression in Kaplan-Meier survival analyses. Meanwhile, ACO1 and IREB2 regulate autophagy-linked ferroptosis along with immune cell invasion in the tumor microenvironment in KIRC patients. Blocking the activation of these two genes by their inhibitors OMA and SNP ameliorated sorafenib-triggered cell death, supporting that ACO1 and IREB2 could be participated in its cytotoxic influence on renal cancer cells. Conclusion: ACO1 and IREB2 downregulation in renal cancers were correlated with cancer aggressiveness, cellular iron homeostasis, cytotoxic immune cell infiltration, and patient survival outcomes. Our research is integral to verify the possible significance of ACO1 and IREB2 contents as a powerful signature for targeted treatment or novel immunotherapy in clinical settings.

19.
ACS Appl Mater Interfaces ; 14(18): 21232-21241, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35486957

ABSTRACT

The high-quality semipolar (112̅2) AlGaN epitaxial films have been obtained on m-plane sapphire by metal-organic chemical vapor deposition. X-ray rocking curve measurements show the full-width at half-maximums of semipolar (112̅2)-oriented AlGaN films are 0.357° and 0.531° along [112̅3̅]AlGaN and [11̅00]AlGaN, respectively. The fabricated semipolar AlGaN metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector (PD) exhibits a high responsivity of 1842 A/W. The fast response and reliability of the UV PD are ensured via fast switching with a rise and decay time of 90 ms and 53(720) ms, respectively. The UV PD exhibits a significant reduction in the dark current, that is, from 100 µA to 780 fA at 10 V, using a simple wet chemical etching to modify the surface properties of materials. The photo-to-dark-current ratio value of the etched UV PD reaches 4 orders of magnitude higher than the unetched UV PD under 270 nm illumination. These are attributed to the fact that KOH wet etching assists in eliminating the surface states and reconstructing the surface oxides. This work might provide a new potential for the development of solar-blind UV PDs with high performance.

20.
Front Public Health ; 10: 799159, 2022.
Article in English | MEDLINE | ID: mdl-35400048

ABSTRACT

Objective: To explore the role of the respiratory therapy team in the treatment of patients with acquired immunodeficiency syndrome (AIDS) complicated with pneumocystis pneumonia (PCP) undergoing mechanical ventilation. Methods: A retrospective cross-sectional study was conducted, including 60 patients with AIDS complicated with PCP undergoing mechanical ventilation in our hospital from June 2019 to July 2020. In the process of patient respiratory monitoring, hospital transport, ventilator withdrawal, airway management, various aerosol treatments and controlled oxygen therapy, patients were divided into the control group and the case group according to whether the respiratory therapy team was involved or not (30 in the control group, 25 males and five females; 30 in the case group, 24 males and six females). The baseline data, mechanical ventilation time, hospitalization time and hospitalization expenses of the two groups were compared. Results: There was no statistically significant difference in baseline data between the case and control groups (P > 0.05). Compared with the control group, the case group had significantly shorter mechanical ventilation times and average hospitalization lengths and the average expenses decreased, and the difference was statistically significant (P < 0.05). Conclusion: The participation of the respiratory therapy team in the mechanical ventilation treatment of patients with AIDS and PCP helps to shorten the mechanical ventilation time and the average length of hospitalization and reduce the hospitalization expenses of patients. It is expected to increase the cure rate of such patients and improve their prognosis.


Subject(s)
Acquired Immunodeficiency Syndrome , Pneumonia, Pneumocystis , Respiratory Insufficiency , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/therapy , Cross-Sectional Studies , Female , Humans , Male , Pneumonia, Pneumocystis/complications , Pneumonia, Pneumocystis/therapy , Respiration, Artificial/adverse effects , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...