Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 88, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095530

ABSTRACT

BACKGROUND: Psychological health risk is one of the most severe and complex risks in manned deep-space exploration and long-term closed environments. Recently, with the in-depth research of the microbiota-gut-brain axis, gut microbiota has been considered a new approach to maintain and improve psychological health. However, the correlation between gut microbiota and psychological changes inside long-term closed environments is still poorly understood. Herein, we used the "Lunar Palace 365" mission, a 1-year-long isolation study in the Lunar Palace 1 (a closed manned Bioregenerative Life Support System facility with excellent performance), to investigate the correlation between gut microbiota and psychological changes, in order to find some new potential psychobiotics to maintain and improve the psychological health of crew members. RESULTS: We report some altered gut microbiota that were associated with psychological changes in the long-term closed environment. Four potential psychobiotics (Bacteroides uniformis, Roseburia inulinivorans, Eubacterium rectale, and Faecalibacterium prausnitzii) were identified. On the basis of metagenomic, metaproteomic, and metabolomic analyses, the four potential psychobiotics improved mood mainly through three pathways related to nervous system functions: first, by fermenting dietary fibers, they may produce short-chain fatty acids, such as butyric and propionic acids; second, they may regulate amino acid metabolism pathways of aspartic acid, glutamic acid, tryptophan, etc. (e.g., converting glutamic acid to gamma-aminobutyric acid; converting tryptophan to serotonin, kynurenic acid, or tryptamine); and third, they may regulate other pathways, such as taurine and cortisol metabolism. Furthermore, the results of animal experiments confirmed the positive regulatory effect and mechanism of these potential psychobiotics on mood. CONCLUSIONS: These observations reveal that gut microbiota contributed to a robust effect on the maintenance and improvement of mental health in a long-term closed environment. Our findings represent a key step towards a better understanding the role of the gut microbiome in mammalian mental health during space flight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew mental health during future long-term human space expeditions on the moon or Mars. This study also provides an essential reference for future applications of psychobiotics to neuropsychiatric treatments. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Moon , Multiomics , Tryptophan , Glutamates , Mammals
2.
Environ Pollut ; 329: 121613, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37087089

ABSTRACT

Understanding the microbial communities and antibiotic resistance genes (ARGs) in spacecraft assembly cleanrooms is crucial for spacecraft microbial control and astronaut safety. However, there have been few reports of ARG profiles and their relationship with microbiomes in such environments. In the present study, we assessed the bacterial community and ARGs in the air dust and surface environments of a typical spacecraft assembly cleanroom. Our results show a significant difference in bacterial composition between surfaces and air dust, as they belong to two distinct ecostates. Bacillus and Acinetobacter were significantly enriched in the air samples. Bacterial community network analysis revealed lower topological parameters and robustness of bacterial networks in the air samples. We also observed different distribution patterns of some typical ARGs between surface and air dust samples. Notably, the ermB gene exhibited a relatively high copy number and was enriched in the surface environment, compared to that in the air. Overall, our study provides insight into the complex microbial community and the distribution and transfer of ARGs in spacecraft assembly cleanrooms, and offers important input for developing control strategies against ARGs.


Subject(s)
Microbiota , Spacecraft , Anti-Bacterial Agents , Bacteria/genetics , Dust , Genes, Bacterial , Microbiota/genetics
3.
Microbiome ; 10(1): 169, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224642

ABSTRACT

BACKGROUND: Chinese Lunar Palace 1 (LP1) is a ground-based bio-regenerative life support system (BLSS) test bed integrating highly efficient plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. To date, there has been no molecular method-based detailed investigation of the fungal community and mycotoxin potential in BLSS habitats. To ensure safe BLSS design for actual space missions, we analyzed the LP1 surface mycobiome and mycotoxin potential during the Lunar Palace 365 project through internal transcribed spacer region 1 (ITS1) amplicon sequencing and quantitative polymerase chain reaction (qPCR) with primers specific for idh, ver1, nor1, tri5, and ITS1. RESULTS: The LP1 system exhibited significant differences in fungal community diversity compared to other confined habitats, with higher fungal alpha diversity and different community structures. Significant differences existed in the surface fungal communities of the LP1 habitat due to the presence of different occupant groups. However, there was no significant difference between fungal communities in the plant cabin with various occupants. Source tracker analysis shows that most of the surface fungi in LP1 originated from plants. Regardless of differences in occupants or location, there were no significant differences in mycotoxin gene copy number. CONCLUSIONS: Our study reveals that plants are the most crucial source of the surface fungal microbiome; however, occupant turnover can induce significant perturbations in the surface fungal community in a BLSS. Growing plants reduced fungal fluctuations, maintaining a healthy balance in the surface fungal microbiome and mycotoxin potential. Moreover, our study provides data important to (i) future risk considerations in crewed space missions with long-term residency, (ii) an optimized design and planning of a space mission that incorporates crew shifts and plant growth, and (iii) the expansion of our knowledge of indoor fungal communities with plant growth, which is essential to maintain safe working and living environments. Video Abstract.


Subject(s)
Mycobiome , Mycotoxins , Animals , Fungi/genetics , Moon , Mycobiome/genetics , Nitrogen , Plants , Solid Waste
4.
Microbiol Spectr ; 10(2): e0025422, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35254118

ABSTRACT

The long-term exposure to enclosed environments may lead to chronic stress in crewmembers and affect their physical and mental state. Salivary microbiome and biomarkers of immune function are increasingly used in human health research. The "Lunar Palace 365" project, which was a 370-day, multicrew, enclosed experiment carried out in a ground-based bioregenerative life support system platform named Lunar Palace 1 (LP1). We investigated the temporal dynamics of the salivary microbiota and cytokines in the third phase of the "Lunar Palace 365" experiment, including 1 month before entering LP1 and 1 month after leaving Lp1. Results reveal no regular temporal change pattern in these parameters (highly abundant phyla and genera) during the experiment. Although the crewmembers' oral microbiota temporally changed, it recovered quickly after the study subjects left the enclosed environment. The levels of IL-6, IL-10, and TNF-α in crewmembers' saliva decreased after leaving the normal environment for the enclosed environment, indicating that their oral inflammatory response level was reduced. There were significant individual differences in crewmembers' salivary microbiota, however, the shared living space reduced these differences. Moreover, air microbiota might have also played a significant role in reducing the individual differences. In summary, the enclosed environment did not result in persistent changes in human salivary microbiota and oral immunity. This study provides some insights for studying the effect of enclosed controlled environments on human immunity and microbiome. IMPORTANCE Long-term exposure to space environments may influence the human microbiome, the human immune system, and the intricate balance between the two, causing impaired immunity and increased disease susceptibility. It was previously believed that the main potential factors of long-term spaceflight on human health were microgravity and radiation. However, the effects of long-term enclosed environments on human health were unclear. Bioregenerative life support systems (BLSS) is a good experimental model for studying the effects of enclosed environments on human systemic microbiota and immune disorders. We monitored the microbiota and cytokines in the saliva of crewmembers before they entered BLSS, during their stay in BLSS, and after leaving BLSS. The results indicated long-term closed environment will not cause persistent changes in human salivary microbiota and immunity.


Subject(s)
Microbiota , Space Flight , Cytokines , Humans , Life Support Systems , Saliva
5.
Environ Microbiome ; 17(1): 4, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081988

ABSTRACT

BACKGROUND: Understanding the dynamics of airborne microbial communities and antibiotic resistance genes (ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support systems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun sequencing, and qPCR). RESULTS: We found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in a controlled environment but lower than that in an open environment. Personnel exchange led to significant differences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, human presence had the strongest effect on the succession of microbial diversity in the BLSSs. CONCLUSIONS: Our results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living environment, including plant growth.

6.
J Photochem Photobiol B ; 217: 112156, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33647735

ABSTRACT

Adequate sunlight exposure helps reduce bone loss and is important to bone health. Currently, about 90% of the world population spends a major portion of daily life under artificial lighting. Unlike sunlight, LED white light, the main source of artificial lighting, has no infrared radiation, which is known to be beneficial to human health. In artificial lighting environments, infrared supplementation may be used to simulate the effects of sunlight on bone metabolism. Here, we supplemented white LED exposure with infrared light in normal and ovariectomized rats for three consecutive months and examined bone turnover, bone mass, and bone density. We also analyzed the structure and function of gut microbiota in the rats. Infrared supplementation significantly reduced the abundance of Saccharibacteria and increased the abundance of Clostridiaceae 1 and Erysipelotrichaceae bacteria. Our results indicate that changes in the gut microbiome correlate well with bone mass and bone metabolism. Our work demonstrates that infrared supplementation can have a positive effect on rat bone metabolism by affecting gut microbiota. Our findings will be important considerations in the future design of healthy lighting environments that prevent or possibly ameliorate osteoporosis.


Subject(s)
Bone and Bones/metabolism , Gastrointestinal Microbiome/radiation effects , Infrared Rays , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bone Density , Calcitriol/blood , Female , Ovariectomy , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats , Rats, Sprague-Dawley
7.
Biotechnol Lett ; 38(10): 1769-74, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27341834

ABSTRACT

OBJECTIVES: To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia. RESULTS: Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhAΔaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains. CONCLUSION: Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.


Subject(s)
Aldehyde Oxidoreductases/genetics , Gene Deletion , Klebsiella pneumoniae/enzymology , L-Lactate Dehydrogenase/genetics , Propylene Glycols/metabolism , Bacterial Proteins/genetics , Batch Cell Culture Techniques , Fermentation , Genetic Engineering/methods , Klebsiella pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...