Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Fundam Res ; 4(3): 678-689, 2024 May.
Article in English | MEDLINE | ID: mdl-38933195

ABSTRACT

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype. Molecular stratification and target therapy bring clinical benefit for TNBC patients, but it is difficult to implement comprehensive molecular testing in clinical practice. Here, using our multi-omics TNBC cohort (N = 425), a deep learning-based framework was devised and validated for comprehensive predictions of molecular features, subtypes and prognosis from pathological whole slide images. The framework first incorporated a neural network to decompose the tissue on WSIs, followed by a second one which was trained based on certain tissue types for predicting different targets. Multi-omics molecular features were analyzed including somatic mutations, copy number alterations, germline mutations, biological pathway activities, metabolomics features and immunotherapy biomarkers. It was shown that the molecular features with therapeutic implications can be predicted including the somatic PIK3CA mutation, germline BRCA2 mutation and PD-L1 protein expression (area under the curve [AUC]: 0.78, 0.79 and 0.74 respectively). The molecular subtypes of TNBC can be identified (AUC: 0.84, 0.85, 0.93 and 0.73 for the basal-like immune-suppressed, immunomodulatory, luminal androgen receptor, and mesenchymal-like subtypes respectively) and their distinctive morphological patterns were revealed, which provided novel insights into the heterogeneity of TNBC. A neural network integrating image features and clinical covariates stratified patients into groups with different survival outcomes (log-rank P < 0.001). Our prediction framework and neural network models were externally validated on the TNBC cases from TCGA (N = 143) and appeared robust to the changes in patient population. For potential clinical translation, we built a novel online platform, where we modularized and deployed our framework along with the validated models. It can realize real-time one-stop prediction for new cases. In summary, using only pathological WSIs, our proposed framework can enable comprehensive stratifications of TNBC patients and provide valuable information for therapeutic decision-making. It had the potential to be clinically implemented and promote the personalized management of TNBC.

2.
Environ Res ; 258: 119415, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906446

ABSTRACT

BACKGROUND: PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE: This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS: C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS: The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 µg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS: Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.

3.
Bioinform Adv ; 4(1): vbae063, 2024.
Article in English | MEDLINE | ID: mdl-38736683

ABSTRACT

Motivation: Ribonucleoside monophosphates (rNMPs) are the most abundant non-standard nucleotides embedded in genomic DNA. If the presence of rNMP in DNA cannot be controlled, it can lead to genome instability. The actual regulatory functions of rNMPs in DNA remain mainly unknown. Considering the association between rNMP embedment and various diseases and cancer, the phenomenon of rNMP embedment in DNA has become a prominent area of research in recent years. Results: We introduce the rNMPID database, which is the first database revealing rNMP-embedment characteristics, strand bias, and preferred incorporation patterns in the genomic DNA of samples from bacterial to human cells of different genetic backgrounds. The rNMPID database uses datasets generated by different rNMP-mapping techniques. It provides the researchers with a solid foundation to explore the features of rNMP embedded in the genomic DNA of multiple sources, and their association with cellular functions, and, in future, disease. It also significantly benefits researchers in the fields of genetics and genomics who aim to integrate their studies with the rNMP-embedment data. Availability and implementation: rNMPID is freely accessible on the web at https://www.rnmpid.org.

4.
J Affect Disord ; 360: 188-197, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38821373

ABSTRACT

BACKGROUND: Depression accounts for a high proportion of neuropsychiatric disorders and is associated with abnormal states of neurons in specific brain regions. Microglia play a pivotal role in the inflammatory state during depression development; however, the exact mechanism underlying chronic mood states remains unknown. Thus, the present study aimed to determine whether microRNAs (miRNAs) alleviate stress-induced depression-like behavior in mice by regulating the expression levels of their target genes, explore the role of neuroinflammation induced by microglial activation in the pathogenesis and progression of depression, and determine whether the role of the miR-29a-5p/transmembrane protein 33 (TMEM33) axis. METHODS: In this study, chronic unpredictable mild stress (CUMS) mouse depression model, various behavioral tests, western blotting, dual-luciferase reporter assay, enzyme-linked immunosorbent assay, real-time quantitative reverse transcription PCR, immunofluorescence and lentivirus-mediated gene transfer were used. RESULTS: After exposure to the CUMS paradigm, miR-29a-5p was significantly down-regulated. This downregulation subsequently promoted the polarization of microglia M1 by upregulating the expression of TMEM33, resulting in enhanced inflammatory chemokines affecting neurons. Conversely, the upregulation of miR-29a-5p within the prefrontal cortex (PFC) suppressed TMEM33 expression, facilitated microglia M2-polarization, and ameliorated depressive-like behavior. LIMITATIONS: Only rodent models of depression were used, and human samples were not included. CONCLUSIONS: The results of this study suggest that miR-29a-5p deficits within the PFC mediate microglial anomalies and contribute to depressive-like behaviors. miR-29a-5p and TMEM33 may, therefore, serve as potential therapeutic targets for the treatment of depression.


Subject(s)
Depression , Disease Models, Animal , Membrane Proteins , MicroRNAs , Microglia , Prefrontal Cortex , Stress, Psychological , Animals , Male , Mice , Behavior, Animal/physiology , Depression/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Microglia/metabolism , MicroRNAs/genetics , Prefrontal Cortex/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism
5.
Sci Rep ; 14(1): 7028, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528062

ABSTRACT

Accurate indel calling plays an important role in precision medicine. A benchmarking indel set is essential for thoroughly evaluating the indel calling performance of bioinformatics pipelines. A reference sample with a set of known-positive variants was developed in the FDA-led Sequencing Quality Control Phase 2 (SEQC2) project, but the known indels in the known-positive set were limited. This project sought to provide an enriched set of known indels that would be more translationally relevant by focusing on additional cancer related regions. A thorough manual review process completed by 42 reviewers, two advisors, and a judging panel of three researchers significantly enriched the known indel set by an additional 516 indels. The extended benchmarking indel set has a large range of variant allele frequencies (VAFs), with 87% of them having a VAF below 20% in reference Sample A. The reference Sample A and the indel set can be used for comprehensive benchmarking of indel calling across a wider range of VAF values in the lower range. Indel length was also variable, but the majority were under 10 base pairs (bps). Most of the indels were within coding regions, with the remainder in the gene regulatory regions. Although high confidence can be derived from the robust study design and meticulous human review, this extensive indel set has not undergone orthogonal validation. The extended benchmarking indel set, along with the indels in the previously published known-positive set, was the truth set used to benchmark indel calling pipelines in a community challenge hosted on the precisionFDA platform. This benchmarking indel set and reference samples can be utilized for a comprehensive evaluation of indel calling pipelines. Additionally, the insights and solutions obtained during the manual review process can aid in improving the performance of these pipelines.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Humans , Computational Biology , Quality Control , INDEL Mutation , Polymorphism, Single Nucleotide
6.
Toxicol Res (Camb) ; 13(2): tfae040, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500512

ABSTRACT

Objectives: Gastric cancer (GC) is the leading digestive malignancy with high incidence and mortality rate. microRNAs (miRs) play an important role in GC progresssion. This study aimed to investigate the effect of miR-98-5p on proliferation, migration, and invasion of GC cells. Methods: The expression levels of miR-98-5p, ubiquitin specific peptidase 44 (USP44), and CCCTCbinding factor-like (CTCFL) in GC tissues and cells were identified using reversetranscription quantitative polymerase chain reaction and Western blot assay. The relationship between miR-98-5p expression/USP44 and the clinicopathological features in GC patients was analyzed. GC cell proliferation, invasion, and migration were evaluated by cell counting kit-8 and clone formation assays and Transwell assays. The bindings of miR-98-5p to USP44 and USP44 to CTCFL were examined using dualluciferase assay and co-immunoprecipitation. GC cells were treated with MG132 and the ubiquitination level of CTCFL was examined using ubiquitination assay. Rescue experiments were performed to verify the roles of USP44 and CTCFL in GC cells. Results: miR-98-5p was downregulated in GC. miR-98-5p overexpression inhibited the proliferation, migration, and invasion of GC cells. miR-98-5p inhibited USP44 expression. USP44 bound to CTCFL and limited ubiquitination degradation of CTCFL. Overexpression of USP44 and CTCFL attenuated the inhibitory effects of miR-98-5p overexpression on GC cell progression. Conclusion: miR-98-5p overexpression limited USP44-mediated CTCFL deubiquitination, and suppressed CTCFL expression, mitigating GC cell proliferation, migration, and invasion.

7.
Nat Cancer ; 5(4): 673-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347143

ABSTRACT

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.


Subject(s)
Asian People , Breast Neoplasms , Receptor, ErbB-2 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Female , Asian People/genetics , Receptor, ErbB-2/genetics , Mutation , Proteomics/methods , Gene Expression Profiling/methods , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Middle Aged , China/epidemiology , Ferroptosis/genetics , Adult , Metabolomics/methods , Transcriptome , Biomarkers, Tumor/genetics , East Asian People
8.
Genome Biol ; 25(1): 34, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268000

ABSTRACT

BACKGROUND: Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory comparability and effective integration of diverse datasets. RESULTS: As part of the Quartet Project, we establish a publicly available suite of four metabolite reference materials derived from B lymphoblastoid cell lines from a family of parents and monozygotic twin daughters. We generate comprehensive LC-MS-based metabolomic data from the Quartet reference materials using targeted and untargeted strategies in different laboratories. The Quartet multi-sample-based signal-to-noise ratio enables objective assessment of the reliability of intra-batch and cross-batch metabolomics profiling in detecting intrinsic biological differences among the four groups of samples. Significant variations in the reliability of the metabolomics profiling are identified across laboratories. Importantly, ratio-based metabolomics profiling, by scaling the absolute values of a study sample relative to those of a common reference sample, enables cross-laboratory quantitative data integration. Thus, we construct the ratio-based high-confidence reference datasets between two reference samples, providing "ground truth" for inter-laboratory accuracy assessment, which enables objective evaluation of quantitative metabolomics profiling using various instruments and protocols. CONCLUSIONS: Our study provides the community with rich resources and best practices for inter-laboratory proficiency tests and data integration, ensuring reliability of large-scale and longitudinal metabolomic studies.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Metabolomics , Humans , Reproducibility of Results , Cell Line , Twins, Monozygotic
9.
Heliyon ; 9(12): e22605, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107270

ABSTRACT

Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a low early diagnosis rate. Owing to the side effects, tolerance, and patient contraindications of existing therapies, effective drug treatments for HCC remain a major clinical challenge. However, using approved or investigational drugs not initially intended for cancer therapy is a promising strategy for resolving this problem because their safety have been tested in clinic. Therefore, this study evaluated differentially expressed genes between liver cancer and normal tissues in a cohort of patients with HCC from The Cancer Genome Atlas and applied them to query a connectivity map to identify candidate anti-HCC drugs. As a result, fluphenazine was identified as a candidate for anti-HCC therapy in vitro and in vivo. Fluphenazine suppressed HCC cell proliferation and migration and induced cell cycle arrest and apoptosis, possibly owing to disrupted lysosomal function, blocking autophagy flux. Additionally, in vivo studies demonstrated that fluphenazine suppresses HCC subcutaneous xenografts growth without causing severe side effects. Strikingly, fluphenazine could be used as an analgesic to alleviate oxaliplatin-induced pain as well as pain related anxiety-like behavior. Therefore, fluphenazine could be a novel liver cancer treatment candidate.

10.
Genome Biol ; 24(1): 270, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012772

ABSTRACT

BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome. RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data. CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.


Subject(s)
Benchmarking , Genome, Human , Humans , Reproducibility of Results , Polymorphism, Single Nucleotide , Germ Cells , High-Throughput Nucleotide Sequencing/methods
11.
Genome Biol ; 24(1): 245, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884999

ABSTRACT

The Quartet Data Portal facilitates community access to well-characterized reference materials, reference datasets, and related resources established based on a family of four individuals with identical twins from the Quartet Project. Users can request DNA, RNA, protein, and metabolite reference materials, as well as datasets generated across omics, platforms, labs, protocols, and batches. Reproducible analysis tools allow for objective performance assessment of user-submitted data, while interactive visualization tools support rapid exploration of reference datasets. A closed-loop "distribution-collection-evaluation-integration" workflow enables updates and integration of community-contributed multiomics data. Ultimately, this portal helps promote the advancement of reference datasets and multiomics quality control.


Subject(s)
Multiomics , Software , Humans , Quality Control
13.
Nat Commun ; 14(1): 6796, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880211

ABSTRACT

Digital pathology allows computerized analysis of tumor ecosystem using whole slide images (WSIs). Here, we present single-cell morphological and topological profiling (sc-MTOP) to characterize tumor ecosystem by extracting the features of nuclear morphology and intercellular spatial relationship for individual cells. We construct a single-cell atlas comprising 410 million cells from 637 breast cancer WSIs and dissect the phenotypic diversity within tumor, inflammatory and stroma cells respectively. Spatially-resolved analysis identifies recurrent micro-ecological modules representing locoregional multicellular structures and reveals four breast cancer ecotypes correlating with distinct molecular features and patient prognosis. Further analysis with multiomics data uncovers clinically relevant ecosystem features. High abundance of locally-aggregated inflammatory cells indicates immune-activated tumor microenvironment and favorable immunotherapy response in triple-negative breast cancers. Morphological intratumor heterogeneity of tumor nuclei correlates with cell cycle pathway activation and CDK inhibitors responsiveness in hormone receptor-positive cases. sc-MTOP enables using WSIs to characterize tumor ecosystems at the single-cell level.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Ecosystem , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment
14.
Nat Commun ; 14(1): 5358, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660097

ABSTRACT

Due to the tolerance of mismatches between gRNA and targeting sequence, base editors frequently induce unwanted Cas9-dependent off-target mutations. Here, to develop models to predict such off-targets, we design gRNA-off- target pairs for adenine base editors (ABEs) and cytosine base editors (CBEs) and stably integrate them into the human cells. After five days of editing, we obtain valid efficiency datasets of 54,663 and 55,727 off-targets for ABEs and CBEs, respectively. We use the datasets to train deep learning models, resulting in ABEdeepoff and CBEdeepoff, which can predict off-target sites. We use these tools to predict off-targets for a panel of endogenous loci and achieve Spearman correlation values varying from 0.710 to 0.859. Finally, we develop an integrated tool that is freely accessible via an online web server http://www.deephf.com/#/bedeep/bedeepoff . These tools could facilitate minimizing the off-target effects of base editing.


Subject(s)
Deep Learning , Gene Editing , Adenine , Cytosine
15.
Heliyon ; 9(9): e19233, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674842

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is a major malignant tumor of the digestive system with a high incidence rate and poor early diagnosis. Coiled-coil domain-containing protein 115 (CCDC115), an accessory component of vacuolar-ATPase with dramatically abnormal expression, is associated with survival outcomes of cancer patients. However, the role of CCDC115 in LIHC remains unclear. In this study, we aimed to determine the functional role of CCDC115 in LIHC by examining CCDC115 expression, and its influence on LIHC prognosis. Through extensive statistical analyses, using LIHC patient databases, we observed that CCDC115 expression significantly increased in tumor tissues of LIHC patients. In addition, CCDC115 expression correlated with the poor prognosis. Additionally, CCDC115 was found to be involved in several cancer-related pathways, specifically the PI3K-Akt pathway. The expression of CCDC115 was positively correlated with human leukocyte antigen molecules as well as with immune checkpoint molecules in LIHC patients. We performed in vitro experiments and confirmed that the expression of CCDC115 significantly affects the proliferation potential, metastasis and sorafenib resistance of liver cancer cells, as well as some key protein expression in PI3K-Akt pathway. These results indicate that CCDC115 could serve as a diagnostic and prognostic biomarker of LIHC, and targeting CCDC115 may provide a potential strategy to enhance the efficacy of liver cancer therapy.

16.
Nat Biotechnol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679545

ABSTRACT

Certified RNA reference materials are indispensable for assessing the reliability of RNA sequencing to detect intrinsically small biological differences in clinical settings, such as molecular subtyping of diseases. As part of the Quartet Project for quality control and data integration of multi-omics profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets between two samples, providing cross-platform and cross-laboratory 'ground truth'. Investigation of the intrinsically subtle biological differences among the Quartet samples enables sensitive assessment of cross-batch integration of transcriptomic measurements at the ratio level. The Quartet RNA reference materials, combined with the ratio-based reference datasets, can serve as unique resources for assessing and improving the quality of transcriptomic data in clinical and biological settings.

17.
Nat Biotechnol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679543

ABSTRACT

Characterization and integration of the genome, epigenome, transcriptome, proteome and metabolome of different datasets is difficult owing to a lack of ground truth. Here we develop and characterize suites of publicly available multi-omics reference materials of matched DNA, RNA, protein and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters. These references provide built-in truth defined by relationships among the family members and the information flow from DNA to RNA to protein. We demonstrate how using a ratio-based profiling approach that scales the absolute feature values of a study sample relative to those of a concurrently measured common reference sample produces reproducible and comparable data suitable for integration across batches, labs, platforms and omics types. Our study identifies reference-free 'absolute' feature quantification as the root cause of irreproducibility in multi-omics measurement and data integration and establishes the advantages of ratio-based multi-omics profiling with common reference materials.

18.
Genome Biol ; 24(1): 201, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37674217

ABSTRACT

BACKGROUND: Batch effects are notoriously common technical variations in multiomics data and may result in misleading outcomes if uncorrected or over-corrected. A plethora of batch-effect correction algorithms are proposed to facilitate data integration. However, their respective advantages and limitations are not adequately assessed in terms of omics types, the performance metrics, and the application scenarios. RESULTS: As part of the Quartet Project for quality control and data integration of multiomics profiling, we comprehensively assess the performance of seven batch effect correction algorithms based on different performance metrics of clinical relevance, i.e., the accuracy of identifying differentially expressed features, the robustness of predictive models, and the ability of accurately clustering cross-batch samples into their own donors. The ratio-based method, i.e., by scaling absolute feature values of study samples relative to those of concurrently profiled reference material(s), is found to be much more effective and broadly applicable than others, especially when batch effects are completely confounded with biological factors of study interests. We further provide practical guidelines for implementing the ratio based approach in increasingly large-scale multiomics studies. CONCLUSIONS: Multiomics measurements are prone to batch effects, which can be effectively corrected using ratio-based scaling of the multiomics data. Our study lays the foundation for eliminating batch effects at a ratio scale.


Subject(s)
Algorithms , Multiomics , Base Composition , Benchmarking , Clinical Relevance
19.
EBioMedicine ; 94: 104728, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506543

ABSTRACT

BACKGROUND: Ground-glass opacity (GGO)-like lung adenocarcinoma (LUAD) has been detected increasingly in the clinic and its inert property and superior survival indicate unique biological characteristics. However, we do not know much about them, which hampers identification of key reasons for the inert property of GGO-like LUAD. METHODS: Using whole-exome sequencing and RNA sequencing, taking into account both radiological and pathological classifications of the same 197 patients concomitantly, we systematically interrogate genes driving the progression from GGO to solid nodule and potential reasons for the inertia of GGO. Using flow cytometry and IHC, we validated the abundance of immune cells and activity of cell proliferation. FINDINGS: Identifying the differences between GGO and solid nodule, we found adenocarcinoma in situ/minimally invasive adenocarcinoma (AIS/MIA) and GGO-like LUAD exhibited lower TP53 mutation frequency and less active cell proliferation-related pathways than solid nodule in LUAD. Identifying the differences in GGO between AIS/MIA and LUAD, we noticed that EGFR mutation frequency and CNV load were significantly higher in LUAD than in AIS/MIA. Regulatory T cell was also higher in LUAD, while CD8+ T cell decreased from AIS/MIA to LUAD. Finally, we constructed a transcriptomic signature to quantify the development from GGO to solid nodule, which was an independent predictor of patients' prognosis in 11 external LUAD datasets. INTERPRETATION: Our results provide deeper insights into the indolent nature of GGO and provide a molecular basis for the treatment of GGO-like LUAD. FUNDING: This study was supported in part by the National Natural Science Foundation of China (32170657), the National Natural Science Foundation of China (82203037), and Shanghai Sailing Program (22YF1408900).

20.
Brain Sci ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37239182

ABSTRACT

The steady-state visually evoked potential (SSVEP) is an important type of BCI that has various potential applications, including in virtual environments using virtual reality (VR). However, compared to VR research, the majority of visual stimuli used in the SSVEP-BCI are plane stimulation targets (PSTs), with only a few studies using stereo stimulation targets (SSTs). To explore the parameter optimization of the SSVEP-BCI virtual SSTs, this paper presents a parameter knowledge graph. First, an online VR stereoscopic stimulation SSVEP-BCI system is built, and a parameter dictionary for VR stereoscopic stimulation parameters (shape, color, and frequency) is established. The online experimental results of 10 subjects under different parameter combinations were collected, and a knowledge graph was constructed to optimize the SST parameters. The best classification performances of the shape, color, and frequency parameters were sphere (91.85%), blue (94.26%), and 13Hz (95.93%). With various combinations of virtual reality stereo stimulation parameters, the performance of the SSVEP-BCI varies. Using the knowledge graph of the stimulus parameters can help intuitively and effectively select appropriate SST parameters. The knowledge graph of the stereo target stimulation parameters presented in this work is expected to offer a way to convert the application of the SSVEP-BCI and VR.

SELECTION OF CITATIONS
SEARCH DETAIL
...