Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur J Med Res ; 29(1): 252, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659079

ABSTRACT

The use of anticoagulants has become more frequent due to the progressive aging population and increased thromboembolic events. Consequently, the proportion of anticoagulant-associated intracerebral hemorrhage (AAICH) in stroke patients is gradually increasing. Compared with intracerebral hemorrhage (ICH) patients without coagulopathy, patients with AAICH may have larger hematomas, worse prognoses, and higher mortality. Given the need for anticoagulant reversal and resumption, the management of AAICH differs from that of conventional medical or surgical treatments for ICH, and it is more specific. Understanding the pharmacology of anticoagulants and identifying agents that can reverse their effects in the early stages are crucial for treating life-threatening AAICH. When patients transition beyond the acute phase and their vital signs stabilize, it is important to consider resuming anticoagulants at the right time to prevent the occurrence of further thromboembolism. However, the timing and strategy for reversing and resuming anticoagulants are still in a dilemma. Herein, we summarize the important clinical studies, reviews, and related guidelines published in the past few years that focus on the reversal and resumption of anticoagulants in AAICH patients to help implement decisive diagnosis and treatment strategies in the clinical setting.


Subject(s)
Anticoagulants , Cerebral Hemorrhage , Humans , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/chemically induced , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Thromboembolism/prevention & control , Thromboembolism/drug therapy
2.
Proc Natl Acad Sci U S A ; 121(6): e2318174121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289955

ABSTRACT

Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.

3.
Angew Chem Int Ed Engl ; 63(5): e202317816, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38082536

ABSTRACT

Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 µmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.

4.
Expert Opin Drug Saf ; : 1-12, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009292

ABSTRACT

BACKGROUND: This study aimed to adopt the conventional signal detection methods to explore a new way of risk identification and to mine important drug risks from the perspective of big data based on Zhenjiang Adverse Event Reporting System (ZAERS). RESEARCH DESIGN AND METHODS: Data were extracted from ZAERS database between 2012 and 2022. The risks of all the reported drug event combinations were identified at the preferred term level and the standardized MedDRA query level using disproportionality analysis. Then, we conducted signal assessment according to the descriptions of drug labels. RESULTS: In total 41,473 ADE were reported and there were 12 risky signals. Signal assessment indicates the suspected causal associations in clindamycin-taste and smell disorders, valsartan-hepatic enzyme increased and valsartan-edema peripheral; the specific manifestations of allergic reactions triggered by clindamycin, cefotaxime, cefazodime, ShexiangZhuanggu plaster, ShexiangZhuifeng plaster, and Yanhuning need to be refined in drug labels. In addition, the drug labels of NiuHuangShangQing tablet/capsule, Fuyanxiao capsule, and BiYanLing tablet should be improved. CONCLUSIONS: In this study, we attempted a new way to find potential drug risks using small spontaneous reporting data. Our findings also suggested the need for more precise identification of allergic risks and the improvement of traditional Chinese medicine labels.

5.
Exp Eye Res ; 232: 109496, 2023 07.
Article in English | MEDLINE | ID: mdl-37268044

ABSTRACT

Diabetes retinopathy (DR) is one of the most common microvascular complications of diabetes. Retinal pigment epithelial (RPE) cells exposed to a high glucose environment experience a series of functional damages, which is an important factor in promoting the progression of DR. Acteoside (ACT) has strong antioxidant and anti-apoptotic properties, but the mechanism of ACT in DR is not completely clear. Therefore, the purpose of the present study was to explore whether ACT inhibits the damage to RPE cells in a high glucose environment through antioxidative effects to alleviate the DR process. The DR in vitro cell model was constructed by treating RPE cells with high glucose, and the DR in vivo animal model was constructed by injecting streptozotocin (STZ) into the peritoneal cavity of mice to induce diabetes. The proliferation and apoptosis of RPE cells were detected by CCK-8 and flow cytometry assays, respectively. The expression changes in Nrf2, Keap1, NQO1 and HO-1 were evaluated by qRT‒PCR, Western blot and immunohistochemistry analyses. The MDA, SOD, GSH-Px and T-AOC contents were detected by kits. The changes in ROS and nuclear translocation of Nrf2 were observed by immunofluorescence assays. HE staining was used to measure the thickness of the outer nuclear layer (ONL) of the retina, and TUNEL staining was used to detect the number of apoptotic cells in the retinas of mice. In the present study, ACT effectively ameliorated outer retina damage in diabetic mice. In high glucose (HG)-induced RPE cells, ACT treatment had the following effects: improved proliferation, decreased apoptosis, inhibited Keap1 expression, promoted the nuclear translocation and expression of Nrf2, upregulated NQO1 and HO-1 (the target genes of Nrf2) expression, decreased ROS concentration, and increased the levels of the SOD, GSH-Px and T-AOC antioxidant indicators. However, knockdown of Nrf2 reversed the above phenomena, which indicated that the protective function of ACT in HG-induced RPE cells are closely related to Nrf2. In summary, the present study demonstrated that HG-induced oxidative stress injury is inhibited by ACT in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Glucosides , Polyphenols , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Diabetic Retinopathy/prevention & control , Glucose/toxicity , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Retina/metabolism , Superoxide Dismutase/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Polyphenols/pharmacology , Polyphenols/therapeutic use
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3207-3220, 2023 11.
Article in English | MEDLINE | ID: mdl-37243759

ABSTRACT

Vascular cognitive impairment (VCI) has been one of the major types of cognitive impairment. Blood-brain barrier damage plays an essential part in the pathogenesis of VCI. At present, the treatment of VCI is mainly focused on prevention, with no drug clinically approved for the treatment of VCI. This study aimed to investigate the effects of DL-3-n-butylphthalide (NBP) on VCI rats. A modified bilateral common carotid artery occlusion (mBCCAO) model was applied to mimic VCI. The feasibility of the mBCCAO model was verified by laser Doppler, 13N-Ammonia-Positron Emission Computed Tomography (PET), and Morris Water Maze. Subsequently, the Morris water maze experiment, Evans blue staining, and western blot of tight junction protein were performed to evaluate the effect of different doses of NBP (40 mg/kg, 80 mg/kg) on the improvement of cognitive impairment and BBB disruption induced by mBCCAO. Immunofluorescence was employed to examine the changes in pericyte coverage in the mBCCAO model and the effect of NBP on pericyte coverage was preliminarily explored. mBCCAO surgery led to obvious cognitive impairment and the decrease of whole cerebral blood flow, among which the blood flow in the cortex, hippocampus and thalamus brain regions decreased more significantly. High-dose NBP (80 mg/kg) improved long-term cognitive function in mBCCAO rats, alleviated Evans blue leakage and reduced the loss of tight junction proteins (ZO-1, Claudin-5) in the early course of the disease, thereby exerting a protective effect on the blood-brain barrier. No significant changes in pericyte coverage were observed after mBCCAO. High-dose NBP improved cognitive function in mBCCAO rats. High-dose NBP protected the integrity of BBB by upregulating TJ protein expression, rather than regulating pericyte coverage ratio. NBP could be a potential drug for the treatment of VCI.


Subject(s)
Benzofurans , Brain Ischemia , Cognitive Dysfunction , Rats , Animals , Blood-Brain Barrier/metabolism , Evans Blue/pharmacology , Evans Blue/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
8.
Phytomedicine ; 115: 154756, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37130481

ABSTRACT

BACKGROUND: The limited understanding of the pathological mechanisms of intracerebral hemorrhage (ICH) and the absence of successful therapies lead to poor prognoses for patients with ICH. Dihydromyricetin (DMY) has many physiological functions, such as regulating lipid and glucose metabolism and modulating tumorigenesis. Moreover, DMY has been proven to be an effective treatment of neuroprotection. However, no reports to date have been made regarding the impact of DMY on ICH. PURPOSE: This investigation aimed to identify the role of DMY on ICH in mice and the underlying mechanisms. METHODS/RESULTS: This study demonstrated that DMY treatment effectively reduced hematoma size and cell apoptosis of brain tissue, and improved neurobehavioral outcomes in mice with ICH. Transcriptional and network pharmacological analyses revealed that lipocalin-2 (LCN2) was a potential target of DMY in ICH. After ICH, LCN2 mRNA and protein expression in brain tissue increased and DMY could inhibit the expression of LCN2. The rescue experiment with the implementation of LCN2 overexpression verified these observations. Furthermore, after DMY treatment, there was a significant decrease in cyclooxygenase 2 (COX2), phospho-extracellular regulated protein kinase (P-ERK), iron deposition, and the number of abnormal mitochondria, which were reversed by the overexpression of LCN2. Proteomics analysis suggests that SLC3A2 may be the downstream target of LCN2, promoting ferroptosis. Finally, LCN2 was shown to bind to SLC3A2 and regulate the downstream glutathione (GSH) synthesis and Glutathione Peroxidase 4 (GPX4) expression and glutathione (GSH) synthesis, as determined by molecular docking and co-immunoprecipitation analysis. CONCLUSION: Our study confirmed for the first time that DMY might offer a favorable treatment for ICH through its action on LCN2. The possible mechanism for this could be that DMY reverses the inhibitory effect of LCN2 on the system Xc-, lessening ferroptosis in brain tissue. The findings of this study offer a greater understanding of how DMY affects ICH at a molecular level and could be conducive to developing therapeutic targets for ICH.


Subject(s)
Cerebral Hemorrhage , Glutathione , Mice , Animals , Lipocalin-2 , Molecular Docking Simulation , Cerebral Hemorrhage/drug therapy , Glutathione/metabolism
9.
Stroke Vasc Neurol ; 8(4): 335-348, 2023 08.
Article in English | MEDLINE | ID: mdl-36854487

ABSTRACT

Hyperhomocysteinemia (HHcy) is independently associated with poorer long-term prognosis in patients with intracerebral haemorrhage (ICH); however, the effect and mechanisms of HHcy on ICH are still unclear. Here, we evaluated neurite outgrowth and neurological functional recovery using simulated models of ICH with HHcy in vitro and in vivo. We found that the neurite outgrowth velocity and motor functional recovery in the ICH plus HHcy group were significantly slower than that in the control group, indicating that homocysteine (Hcy) significantly impedes the neurite outgrowth recovery after ICH. Furthermore, phosphoproteomic data and signalome analysis of perihematomal brain tissues suggested that calmodulin-dependent protein kinases 2 (CAMK2A) kinase substrate pairs were significantly downregulated in ICH with HHcy compared with autologous blood injection only, both western blot and immunofluorescence staining confirmed this finding. Additionally, upregulation of pCAMK2A significantly increased neurite outgrowth recovery in ICH with HHcy. Collectively, we clarify the mechanism of HHcy-hindered neurite outgrowth recovery, and pCAMK2A may serve as a therapeutic strategy for promoting neurological recovery after ICH.


Subject(s)
Cerebral Hemorrhage , Homocysteine , Humans , Cerebral Hemorrhage/complications , Up-Regulation , Neuronal Outgrowth
10.
Transl Stroke Res ; 13(5): 686-706, 2022 10.
Article in English | MEDLINE | ID: mdl-35305264

ABSTRACT

Intracerebral hemorrhage (ICH) is a common subtype of stroke and places a great burden on the family and society with a high mortality and disability rate and a poor prognosis. Many findings from imaging and pathologic studies have suggested that cerebral ischemic lesions visualized on diffusion-weighted imaging (DWI) in patients with ICH are not rare and are generally considered to be associated with poor outcome, increased risk of recurrent (ischemic and hemorrhagic) stroke, cognitive impairment, and death. In this review, we describe the changes in cerebral blood flow (CBF) and DWI lesions after ICH and discuss the risk factors and possible mechanisms related to the occurrence of DWI lesions, such as cerebral microangiopathy, cerebral atherosclerosis, aggressive early blood pressure lowering, hyperglycemia, and inflammatory response. We also point out that a better understanding of cerebral DWI lesions will be a key step toward potential therapeutic interventions to improve long-term recovery for patients with ICH.


Subject(s)
Cerebral Hemorrhage , Stroke , Blood Pressure/physiology , Cerebral Hemorrhage/complications , Cerebrovascular Circulation , Diffusion Magnetic Resonance Imaging/methods , Humans , Stroke/complications
11.
J Neurol Neurosurg Psychiatry ; 91(1): 21-32, 2020 01.
Article in English | MEDLINE | ID: mdl-31658959

ABSTRACT

OBJECTIVES: To systematically review the efficacy and safety of anti-inflammatory agents for patients with major depressive disorders. METHODS: We searched the literature to identify potentially relevant randomised controlled trials (RCTs) up to 1 January 2019. The primary outcome was efficacy, measured by mean changes in depression score from baseline to endpoint. Secondary outcomes included response and remission rates and quality of life (QoL). Safety was evaluated by incidence of classified adverse events. Heterogeneity was examined using the I2 and Q statistic. Pooled standard mean differences (SMDs) and risk ratios (RRs) were calculated. Subgroup meta-analyses were conducted based on type of treatment, type of anti-inflammatory agents, sex, sponsor type and quality of studies. RESULTS: Thirty RCTs with 1610 participants were included in the quantitative analysis. The overall analysis pooling from 26 of the RCTs suggested that anti-inflammatory agents reduced depressive symptoms (SMD -0.55, 95% CI -0.75 to -0.35, I2=71%) compared with placebo. Higher response (RR 1.52, 95% CI 1.30 to 1.79, I2=29%) and remission rates (RR 1.79, 95% CI 1.29 to 2.49, I2=41%) were seen in the group receiving anti-inflammatory agents than in those receiving placebo. Subgroup analysis showed a greater reduction in symptom severity in both the monotherapy and adjunctive treatment groups. Subgroup analysis of non-steroidal anti-inflammatory drugs, omega-3 fatty acids, statins and minocyclines, respectively, disclosed significant antidepressant effects for major depressive disorder (MDD). For women-only trials, no difference in changes of depression severity was found between groups. Subanalysis stratified by sponsor type and study quality led to the same outcomes in favour of anti-inflammatory agents in both subgroups. Changes of QoL showed no difference between the groups. Gastrointestinal events were the only significant differences between groups in the treatment periods. CONCLUSIONS: Results of this systematic review suggest that anti-inflammatory agents play an antidepressant role in patients with MDD and are reasonably safe.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Humans , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...