Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(5): 491-499, 2023 May.
Article in English | MEDLINE | ID: mdl-36898969

ABSTRACT

We report on the use of leaf diffuse reflectance spectroscopy for plant disease detection. A smartphone-operated, compact diffused reflectance spectrophotometer is used for field collection of leaf diffuse reflectance spectra to enable pre-symptomatic detection of the progression of potato late blight disease post inoculation with oomycete pathogen Phytophthora infestans. Neural-network-based analysis predicts infection with >96% accuracy, only 24 h after inoculation with the pathogen, and nine days before visual late blight symptoms appear. Our study demonstrates the potential of using portable optical spectroscopy in tandem with machine learning analysis for early diagnosis of plant diseases.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Spectrum Analysis , Plant Leaves , Plant Diseases
2.
J Interferon Cytokine Res ; 38(1): 29-37, 2018 01.
Article in English | MEDLINE | ID: mdl-29328882

ABSTRACT

This study investigated the anti-inflammatory effects and possible underlying mechanisms of Salvia miltiorrhiza polysaccharides (SMP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The cytotoxicity of SMP was detected by the MTT method. The morphological change of RAW264.7 was observed by Diff-Quik staining. Enzyme-linked immunosorbent assay was used to evaluate the production of cytokines in LPS-induced RAW264.7 cells. The nitric oxide (NO) kit assay detected the NO release from LPS-induced RAW264.7 cells. Real-time polymerase chain reaction was used to detect the transcriptions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 in LPS-induced RAW264.7 cells. The protein expression of nuclear NF-κB was measured by Western blot. The results showed that the safe medication range of SMP was less than 3 mg/mL. Compared with the LPS model group, SMP (2, 1, and 0.5 mg/mL) improved the degree of cell deformation and reduced the amount of pseudopodia, and statistically reduced the secretions of cytokines in cells induced by LPS (P < 0.01) at different time points. SMP significantly inhibited the mRNA transcriptions of TNF-α, IL-6, iNOS, and COX-2 and the protein expressions of NF-κB, p-p65, and p-IκBa. In conclusion, this study preliminarily proved the protective effect of SMP on LPS-induced RAW264.7 macrophage. Its mechanism might be related to inhibition of NF-κB signal pathway and the gene expressions and secretion of cytokines.


Subject(s)
Inflammation Mediators/metabolism , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/immunology , Polysaccharides/pharmacology , Salvia miltiorrhiza/chemistry , Animals , Inflammation Mediators/immunology , Macrophages/drug effects , Macrophages/metabolism , Mice , Polysaccharides/chemistry , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...