Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e16804, 2024.
Article in English | MEDLINE | ID: mdl-38313028

ABSTRACT

Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.


Subject(s)
Anthozoa , Islets of Langerhans , Animals , Humans , Anthozoa/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Signal Transduction
2.
Phys Rev Lett ; 131(4): 046101, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566865

ABSTRACT

Despite the extensive studies of topological systems, the experimental characterizations of strongly nonlinear topological phases have been lagging. To address this shortcoming, we design and build elliptically geared isostatic metamaterials. Their nonlinear topological transitions can be realized by collective soliton motions, which stem from the transition of nonlinear Berry phase. Endowed by the intrinsic nonlinear topological mechanics, surface polar elasticity and dislocation-bound zero modes can be created or annihilated as the topological polarization reverses orientation. Our approach integrates topological physics with strongly nonlinear mechanics and promises multiphase structures at the micro- and macroscales.

3.
Medicina (Kaunas) ; 59(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512164

ABSTRACT

Background and Objectives: The fruit of Schisandra chinensis (Turcz.) Baill. is widely used medicinally to treat coughs, asthma, exhaustion, eczema, and pruritus in Northeast Asian countries, including Korea, China, and Japan. This study was designed to investigate the effects of S. chinensis on dermatitis in mice with calcipotriol (MC-903)-induced atopic dermatitis (AD), and its effects on skin barrier dysfunction was also investigated. Materials and Methods: The inhibitory effects of an ethanolic extract of S. chinensis (EESC) on skin lesions, water content, water-holding capacity (WHC), histopathological abnormalities, and inflammatory cytokine and chemokine levels were evaluated in mice with AD induced by MC903. Results: Topical EESC ameliorated skin lesions, reduced skin water content, and increased MC903-induced WHC. EESC also prevented MC-903-induced histopathological abnormalities such as epidermal disruption, hyperkeratosis, spongiotic changes, and immune cell infiltration in inflamed tissue. Moreover, topical EESC reduced MC-903-induced levels of pro-inflammatory cytokines and chemokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-4, IL-6, IL-8, monocyte chemotactic protein (MCP)-1, and thymic stromal lymphopoietin (TSLP). Furthermore, unlike dexamethasone, EESC did not reduce the spleen/body weight ratio. Conclusions: These results suggest that S. chinensis can be used as an alternative to external corticosteroids and that its anti-inflammatory and skin barrier dysfunction-restoring effects are related to the downregulation of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-4, IL-6, IL-8, and TSLP.


Subject(s)
Dermatitis, Atopic , Schisandra , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Schisandra/metabolism , Interleukin-6 , Interleukin-4 , Interleukin-8 , Recovery of Function , Cytokines/metabolism , Anti-Inflammatory Agents/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Thymic Stromal Lymphopoietin , Chemokines , Water
4.
Appl Opt ; 62(9): 2376-2385, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37132877

ABSTRACT

There have been significant research and analyses on the diffraction efficiency and characteristics of spectral grating with a wavelength-scale period. However, thus far an analysis on a diffraction grating with an ultra-long pitch over several hundred times of the wavelength (>100µm) and a very deep groove over dozens of micrometers has not been performed. We analyzed the diffraction efficiency of these gratings by using the rigorous coupled-wave analysis (RCWA) method and confirmed that the RCWA analytic results correspond well to the actual experimental results on the wide-angle beam-spreading phenomenon. In addition, because a long-period grating with a deep groove results in a small diffraction angle with relatively uniform efficiency, it is possible to convert a point-like distribution to a linear distribution for a short working distance and a discrete distribution for a very long working distance. We believe that a wide-angle line laser with a long grating period can be used in various applications, such as level detectors, precision measurements, multi-point light detecting and ranging (LiDAR) light sources, and security systems.

5.
PLoS One ; 18(3): e0283042, 2023.
Article in English | MEDLINE | ID: mdl-36943854

ABSTRACT

Environment stress is a major threat to the existence of coral reefs and has generated a lot of interest in the coral research community. Under the environmental stress, corals can experience tissue loss and/or the breakdown of symbiosis between the cnidarian host and its symbiotic algae causing the coral tissue to appear white as the skeleton can be seen by transparency. Image analysis is a common method used to assess tissue response under the environmental stress. However, the traditional approach is limited by the dynamic nature of the coral-algae symbiosis. Here, we observed coral tissue response in the scleractinian coral, Montipora capricornis, using high frequency image analysis throughout the experiment, as opposed to the typical start/end point assessment method. Color analysis reveals that the process can be divided into five stages with two critical stages according to coral tissue morphology and color ratio. We further explore changes to the morphology of individual polyps by means of the Pearson correlation coefficient and recurrence plots, where the quasi-periodic and nonstationary dynamics can be identified. The recurrence quantification analysis also allows the comparison between the different polyps. Our research provides a detailed visual and mathematical analysis of coral tissue response to environmental stress, which potentially shows universal applicability. Moreover, our approach provides a robust quantitative advancement for improving our insight into a suite of biotic responses in the perspective of coral health evaluation and fate prediction.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Pilot Projects , Coral Reefs , Stress, Physiological , Symbiosis/physiology
6.
PLoS One ; 18(2): e0270965, 2023.
Article in English | MEDLINE | ID: mdl-36735673

ABSTRACT

With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.


Subject(s)
Anthozoa , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Humans , Anthozoa/genetics , Anthozoa/physiology , Genome , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Models, Animal
7.
ACS Nano ; 16(5): 7848-7860, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35522525

ABSTRACT

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 µmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.

8.
Soft Robot ; 9(5): 938-947, 2022 10.
Article in English | MEDLINE | ID: mdl-35446136

ABSTRACT

The leaf-like origami structure is inspired by geometric patterns found in nature, exhibiting unique transitions between open and closed shapes. With a bistable energy landscape, leaf-like origami is able to replicate the autonomous grasping of objects observed in biological systems such as the Venus flytrap. We show uniform grasping motions of the leaf-like origami, as well as various nonuniform grasping motions that arise from its multitransformable nature. Grasping motions can be triggered with high tunability due to the structure's bistable energy landscape. We demonstrate the self-adaptive grasping motion by dropping a target object onto our paper prototype, which does not require an external power source to retain the capture of the object. We also explore the nonuniform grasping motions of the leaf-like structure by selectively controlling the creases, which reveals various unique grasping configurations that can be exploited for versatile, autonomous, and self-adaptive robotic operations.


Subject(s)
Droseraceae , Hand Strength , Motion
9.
J Mot Behav ; 54(4): 480-489, 2022.
Article in English | MEDLINE | ID: mdl-34913842

ABSTRACT

We investigated the effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) with neurodevelopmental treatment (NDT) on the improvement of motor development and reduction of spasticity in children with cerebral palsy (CP). Twenty-four children with CP were allocated to two groups: the tDCS + NDT group and the only NDT group, done 3 times per week for 5 weeks. The Gross Motor Function Measurement (GMFM-88) and Box and Block Test (BBT) were used to assess changes in motor development, and the Modified Ashworth Scale (MAS) was used to evaluate changes in spasticity. All measurements were carried out at 3 time points: baseline, post-intervention, and 1 month follow-up. We found improvements in the GMFM-88 total scores and in each individual GMFM-88 dimension scores, favoring the tDCS + NDT group over the only NDT group. The BBT scores improved only in the tDCS + NDT group. In addition, the MAS scores reduced in the hemibody with significant motor impairment only in the tDCS + NDT group. The present findings suggest that tDCS combined with NDT can be considered a promising intervention for children with CP, as it can enhance motor development and reduce spasticity in this population.


Subject(s)
Cerebral Palsy , Transcranial Direct Current Stimulation , Child , Humans , Muscle Spasticity/therapy , Transcranial Direct Current Stimulation/methods
10.
PLoS One ; 16(4): e0248953, 2021.
Article in English | MEDLINE | ID: mdl-33831033

ABSTRACT

Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.


Subject(s)
Anthozoa/growth & development , Cell Culture Techniques/methods , Animals
11.
Sci Rep ; 11(1): 7722, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833260

ABSTRACT

Coral reef ecosystems support significant biological activities and harbor huge diversity, but they are facing a severe crisis driven by anthropogenic activities and climate change. An important behavioral trait of the coral holobiont is coral motion, which may play an essential role in feeding, competition, reproduction, and thus survival and fitness. Therefore, characterizing coral behavior through motion analysis will aid our understanding of basic biological and physical coral functions. However, tissue motion in the stony scleractinian corals that contribute most to coral reef construction are subtle and may be imperceptible to both the human eye and commonly used imaging techniques. Here we propose and apply a systematic approach to quantify and visualize subtle coral motion across a series of light and dark cycles in the scleractinian coral Montipora capricornis. We use digital image correlation and optical flow techniques to quantify and characterize minute coral motions under different light conditions. In addition, as a visualization tool, motion magnification algorithm magnifies coral motions in different frequencies, which explicitly displays the distinctive dynamic modes of coral movement. Specifically, our assessment of displacement, strain, optical flow, and mode shape quantify coral motion under different light conditions, and they all show that M. capricornis exhibits more active motions at night compared to day. Our approach provides an unprecedented insight into micro-scale coral movement and behavior through macro-scale digital imaging, thus offering a useful empirical toolset for the coral research community.

12.
Sci Rep ; 10(1): 316, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924843

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Phys Rev Lett ; 123(21): 214301, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809129

ABSTRACT

We present a gradient-index crystal that offers extreme tunability in terms of manipulating the propagation of elastic waves. For small-amplitude excitations, we achieve control over wave transmission depth into the crystal. We numerically and experimentally demonstrate a boomeranglike motion of a wave packet injected into the crystal. For large-amplitude excitations on the same crystal, we invoke nonlinear effects. We numerically and experimentally demonstrate asymmetric wave transmission from two opposite ends of the crystal. Such tunable systems can thus inspire a novel class of designed materials to control linear and nonlinear elastic wave propagation in multiscales.

14.
Adv Mater ; 31(51): e1904386, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31682285

ABSTRACT

The discovery of topologically nontrivial electronic systems has opened a new age in condensed matter research. From topological insulators to topological superconductors and Weyl semimetals, it is now understood that some of the most remarkable and robust phases in electronic systems (e.g., quantum Hall or anomalous quantum Hall) are the result of topological protection. These powerful ideas have recently begun to be explored also in bosonic systems. Topologically protected acoustic, mechanical, and optical edge states have been demonstrated in a number of systems that recreate the requisite topological conditions. Such states that propagate without backscattering could find important applications in communications and energy technologies. Here, a topologically bound mechanical state, a different class of nonpropagating protected state that cannot be destroyed by local perturbations, is demonstrated. It is in particular a mechanical analogue of the well-known Majorana bound states (MBSs) of electronic topological superconductor systems. The topological binding is implemented by creating a Kekulé distortion vortex on a 2D mechanical honeycomb superlattice that can be mapped to a magnetic flux vortex in a topological superconductor.

15.
Sci Rep ; 9(1): 7348, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31089193

ABSTRACT

We propose a complementary split-ring resonator (CSRR) for a directional coupling of surface plasmon polaritons. An air-slot split-ring in a gold film is investigated using the finite-difference time-domain method. The normally incident light couples to either a monopole or a dipole SPP depending on the polarization of light. Adjusting the angle of the linear polarization of the incident light enables a one-way propagation of SPPs on the gold film. Theoretical analysis based on the propagation of cylindrical waves from the SPP point source is provided with Hankel function. The propagated power in one direction is obtained to be 30 times higher than the opposite direction with a coupling efficiency of 18.2% from the simulation for an array of the CSRRs. This approach to the directional coupling of SPPs will be advantageous for miniaturizing photonic and plasmonic circuits and devices.

16.
Sci Adv ; 5(5): eaau2835, 2019 May.
Article in English | MEDLINE | ID: mdl-31139744

ABSTRACT

The principles underlying the art of origami paper folding can be applied to design sophisticated metamaterials with unique mechanical properties. By exploiting the flat crease patterns that determine the dynamic folding and unfolding motion of origami, we are able to design an origami-based metamaterial that can form rarefaction solitary waves. Our analytical, numerical, and experimental results demonstrate that this rarefaction solitary wave overtakes initial compressive strain waves, thereby causing the latter part of the origami structure to feel tension first instead of compression under impact. This counterintuitive dynamic mechanism can be used to create a highly efficient-yet reusable-impact mitigating system without relying on material damping, plasticity, or fracture.

17.
Philos Trans A Math Phys Eng Sci ; 376(2127)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30037934

ABSTRACT

We propose a tunable cylinder-based granular system that is functionally graded in its stiffness distribution in space. With no initial compression given to the system, it supports highly nonlinear waves propagating under an impulse excitation. We investigate analytically, numerically and experimentally the ability to accelerate and decelerate the impulse wave without a significant scattering in the space domain. Moreover, the gradient in stiffness results in the scaling of contact forces along the chain. We envision that such tunable systems can be used for manipulating highly nonlinear impulse waves for novel sensing and impact mitigation purposes.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

18.
Nat Commun ; 9(1): 3018, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30054484

ABSTRACT

The original version of this Article contained an error in second sentence of the Acknowledgements, which incorrectly read 'J.Y. and P.G.K. also acknowledge support from US-ARO (W911NF-15-1-0604) and US-AFOSR (FA9550-17-1-011), and P.G.K. also gratefully acknowledges support from the Stavros Niarchos Foundation via the Greek Diaspora Fellowship Program.' The correct version states 'US-AFOSR (FA9550-17-1-0114)' in place of 'US-AFOSR (FA9550-17-1-011)'. This has been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 640, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440747

ABSTRACT

Energy transport properties in heterogeneous materials have attracted scientific interest for more than half of a century, and they continue to offer fundamental and rich questions. One of the outstanding challenges is to extend Anderson theory for uncorrelated and fully disordered lattices in condensed-matter systems to physical settings in which additional effects compete with disorder. Here we present the first systematic experimental study of energy transport and localization properties in simultaneously disordered and nonlinear granular crystals. In line with prior theoretical studies, we observe in our experiments that disorder and nonlinearity-which individually favor energy localization-can effectively cancel each other out, resulting in the destruction of wave localization. We also show that the combined effect of disorder and nonlinearity can enable manipulation of energy transport speed in granular crystals. Specifically, we experimentally demonstrate superdiffusive transport. Furthermore, our numerical computations suggest that subdiffusive transport should be attainable by controlling the strength of the system's external precompression force.

20.
Sci Rep ; 8(1): 112, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311584

ABSTRACT

Recently, there have been significant efforts to guide mechanical energy in structures by relying on a novel topological framework popularized by the discovery of topological insulators. Here, we propose a topological metamaterial system based on the design of the Stewart Platform, which can not only guide mechanical waves robustly in a desired path, but also can be tuned in situ to change this wave path at will. Without resorting to any active materials, the current system harnesses bistablilty in its unit cells, such that tuning can be performed simply by a dial-in action. Consequently, a topological transition mechanism inspired by the quantum valley Hall effect can be achieved. We show the possibility of tuning in a variety of topological and traditional waveguides in the same system, and numerically investigate key qualitative and quantitative differences between them. We observe that even though both types of waveguides can lead to significant wave transmission for a certain frequency range, topological waveguides are distinctive as they support robust, back scattering immune, one-way wave propagation.

SELECTION OF CITATIONS
SEARCH DETAIL
...