Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci China Life Sci ; 66(12): 2910-2921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37460713

ABSTRACT

Prime editing (PE) is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms. However, no PE systems have been shown to induce heritable mutations in tobacco, nor in any other dicot. In this study, we generated an efficient PE system in tobacco that not only introduced heritable mutations, but also enabled anthocyanin-based reporter selection of transgene-free T1 plants. This system was used to confer Z-abienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene. High levels of Z-abienol were detected in the leaves of homozygous T1 plants at two weeks after topping. This study describes an advance in PE systems and expands genome-editing toolbox in tobacco, even in dicots, for use in basic research and molecular breeding. And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.


Subject(s)
CRISPR-Cas Systems , Diterpenes , CRISPR-Cas Systems/genetics , Gene Editing , Plants/genetics , Nicotiana/genetics , Genome, Plant
2.
Int J Endocrinol ; 2022: 4228740, 2022.
Article in English | MEDLINE | ID: mdl-36034179

ABSTRACT

Background: Hormone status strongly affects women's health and quality of life. To date, studies investigating the association between total testosterone (T) level and bone mineral density (BMD) in women are limited and have yielded contradictory conclusions. The aim of our study was to examine the association between serum total T level and lumbar BMD in postmenopausal women aged 40-59 years. Methods: The study group included 1,058 women from the 2011-2016 National Health and Nutrition Examination Survey. Multiple regression analyses were used to evaluate the association between serum total T level and lumbar BMD. Results: After adjusting for covariates, there was a positive association between the serum total T level and lumbar BMD (ß, 1.07; 95% confidence interval, 0.17-1.97). A non-linearity in this association was identified, with a point of inflection at 30 ng/dL. Conclusions: Serum total T level was positively associated with lumbar BMD in middle-aged postmenopausal women up to a T level >30 ng/dL. Therefore, increasing T level in women with a low serum total T level may have beneficial outcomes on bone health.

3.
J Integr Plant Biol ; 64(10): 1979-1993, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35929655

ABSTRACT

The yield and quality of tomatoes (Solanum lycopersicum) is seriously affected by Phytophthora infestans. The long non-coding RNA (lncRNA) Sl-lncRNA39896 is induced after P. infestans infection and was previously predicted to act as an endogenous target mimic (eTM) for the microRNA Sl-miR166b, which function in stress responses. Here, we further examined the role of Sl-lncRNA39896 and Sl-miR166b in tomato resistance to P. infestans. Sl-miR166b levels were higher in Sl-lncRNA39896-knockout mutants than in wild-type plants, and the mutants displayed enhanced resistance to P. infestans. A six-point mutation in the region of Sl-lncRNA39896 that binds to Sl-miR166b disabled the interaction, suggesting that Sl-lncRNA39896 acts as an eTM for Sl-miR166b. Overexpressing Sl-miR166b yielded a similar phenotype to that produced by Sl-lncRNA39896-knockout, whereas silencing of Sl-miR166b impaired resistance. We verified that Sl-miR166b cleaved transcripts of its target class III homeodomain-leucine zipper genes SlHDZ34 and SlHDZ45. Silencing of SlHDZ34/45 decreased pathogen accumulation in plants infected with P. infestans. Additionally, jasmonic acid and ethylene contents were elevated following infection in the plants with enhanced resistance. Sl-lncRNA39896 is the first known lncRNA to negatively regulate resistance to P. infestans in tomato. We propose a novel mechanism in which the lncRNA39896-miR166b-HDZ module modulates resistance to P. infestans.


Subject(s)
MicroRNAs , Phytophthora infestans , RNA, Long Noncoding , Solanum lycopersicum , Phytophthora infestans/genetics , Solanum lycopersicum/genetics , RNA, Long Noncoding/genetics , Plant Diseases/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , Ethylenes , Disease Resistance/genetics
4.
Theor Appl Genet ; 135(9): 3039-3055, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788748

ABSTRACT

KEY MESSAGE: The novel ZmR1CQ01 allele for maize anthocyanin synthesis was identified, and the biological function and regulatory molecular mechanisms of three ZmR1 alleles were unveiled. Anthocyanins in maize are valuable to human health. The R1 gene family is one of the important regulatory genes for the tissue-specific distribution of anthocyanins. R1 gene allelic variations are abundant and its biological function and regulatory molecular mechanisms are not fully understood. By exploiting genetic mapping and transgenic verification, we found that anthocyanin pigmentation in maize leaf midrib was controlled by ZmR1 on chromosome 10. Allelism test of maize zmr1 EMS mutants confirmed that anthocyanin pigmentation in leaf sheath was also controlled by ZmR1. ZmR1CQ01 was a novel ZmR1 allelic variation obtained from purple maize. Its overexpression caused the whole maize plant to turn purple. ZmR1B73 allele confers anthocyanin accumulation in near ground leaf sheath rather than in leaf midribs. The mRNA expression level of ZmR1B73 was low in leaf midribs, resulting in no anthocyanin accumulation. ZmR1B73 overexpression promoted anthocyanin accumulation in leaf midribs. Loss of exon 5 resulted in ZmR1ZN3 allele function destruction and no anthocyanin accumulation in leaf midrib and leaf sheath. DNA affinity purification sequencing revealed 1010 genes targeted by ZmR1CQ01, including the bz2 in anthocyanin synthesis pathway. RNA-seq analysis showed 55 genes targeted by ZmR1CQ01 changed the expression level significantly, and the expression of genes encoding key enzymes in flavonoid and phenylpropanoid biosynthesis pathways were significantly up-regulated. ZmR1 functional molecular marker was developed. These results revealed the effects of transcriptional regulation and sequence variation on ZmR1 function and identified the genes targeted by ZmR1CQ01 at the genome-wide level.


Subject(s)
Anthocyanins , Zea mays , Alleles , DNA , Gene Expression Regulation, Plant , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger , Zea mays/genetics , Zea mays/metabolism
5.
Nat Plants ; 8(1): 45-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34949802

ABSTRACT

The ability to manipulate the genome in a programmable manner has illuminated biology and shown promise in plant breeding. Prime editing, a versatile gene-editing approach that directly writes new genetic information into a specified DNA site without requiring double-strand DNA breaks, suffers from low efficiency in plants1-5. In this study, N-terminal reverse transcriptase-Cas9 nickase fusion performed better in rice than the commonly applied C-terminal fusion. In addition, introduction of multiple-nucleotide substitutions in the reverse transcriptase template stimulated prime editing with enhanced efficiency. By using these two methods synergistically, prime editing with an average editing frequency as high as 24.3% at 13 endogenous targets in rice transgenic plants, 6.2% at four targets in maize protoplasts and 12.5% in human cells was achieved, which is two- to threefold higher than the original editor, Prime Editor 3. Therefore, our optimized approach has potential to make more formerly non-editable target sites editable, and expands the scope and capabilities of prime editing in the future.


Subject(s)
Gene Editing , Oryza , CRISPR-Cas Systems , Gene Editing/methods , Oryza/genetics , Plant Breeding , Plants, Genetically Modified/genetics
6.
Int J Endocrinol ; 2021: 7523996, 2021.
Article in English | MEDLINE | ID: mdl-34589126

ABSTRACT

INTRODUCTION: Sex hormones play an important role in the development and maintenance of bone and muscle mass. However, studies regarding serum testosterone levels, osteoporosis, and sarcopenia in men are relatively sparse and have led to contradictory conclusions. Therefore, this study aimed to investigate the association between serum testosterone levels and body composition, including bone mineral density (BMD), appendicular lean mass index (ALMI), and appendicular fat mass index (AFMI), among men 20-59 years of age through a cross-sectional analysis of the National Health and Nutrition Examination Survey. MATERIALS AND METHODS: Our analysis was based on the data for 3,875 men, 20-59 years of age. Weighted multiple regression analyses were used to estimate the independent association between serum testosterone levels and body composition. Weighted generalized additive models and smooth curve fittings were used to characterize the nonlinear associations between them. RESULTS: The association between the serum testosterone level and lumbar BMD was positive in each multivariable linear regression model. In the model adjusted for age and race, the serum testosterone level was negatively associated with ALMI. However, in the models adjusted for body mass index, this association became positive. In addition, the association between the serum testosterone level and AFMI was negative in each multivariable linear regression model. CONCLUSION: Our study demonstrated a positive association of serum testosterone level with lumbar BMD and ALMI, and a negative association with AFMI, among men 20-59 years of age, suggesting that increasing testosterone levels may be beneficial to skeletal health in young and middle-aged men with low testosterone levels.

7.
Plant Biotechnol J ; 19(10): 1937-1951, 2021 10.
Article in English | MEDLINE | ID: mdl-33934485

ABSTRACT

Salt stress is a major devastating abiotic factor that affects the yield and quality of maize. However, knowledge of the molecular mechanisms of the responses to salt stress in maize is limited. To elucidate the genetic basis of salt tolerance traits, a genome-wide association study was performed on 348 maize inbred lines under normal and salt stress conditions using 557 894 single nucleotide polymorphisms (SNPs). The phenotypic data for 27 traits revealed coefficients of variation of >25%. In total, 149 significant SNPs explaining 6.6%-11.2% of the phenotypic variation for each SNP were identified. Of the 104 identified quantitative trait loci (QTLs), 83 were related to salt tolerance and 21 to normal traits. Additionally, 13 QTLs were associated with two to five traits. Eleven and six QTLs controlling salt tolerance traits and normal root growth, respectively, co-localized with QTL intervals reported previously. Based on functional annotations, 13 candidate genes were predicted. Expression levels analysis of 12 candidate genes revealed that they were all responsive to salt stress. The CRISPR/Cas9 technology targeting three sites was applied in maize, and its editing efficiency reached 70%. By comparing the biomass of three CRISPR/Cas9 mutants of ZmCLCg and one zmpmp3 EMS mutant with their wild-type plants under salt stress, the salt tolerance function of candidate genes ZmCLCg and ZmPMP3 were confirmed. Chloride content analysis revealed that ZmCLCg regulated chloride transport under sodium chloride stress. These results help to explain genetic variations in salt tolerance and provide novel loci for generating salt-tolerant maize lines.


Subject(s)
Genome-Wide Association Study , Zea mays , Dissection , Phenotype , Polymorphism, Single Nucleotide/genetics , Salt Tolerance/genetics , Seedlings/genetics , Zea mays/genetics
9.
Am J Cancer Res ; 10(8): 2319-2336, 2020.
Article in English | MEDLINE | ID: mdl-32905533

ABSTRACT

Whole human genome microarray was performed to identify the potential molecular mechanisms associated with phospholipase C epsilon (PLCε). Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway analysis revealed that differentially expressed genes were significantly enriched in DNA repair-related pathways. Gene expression of PLCε, exonuclease 1 (EXO1), and ATM serine/threonine kinase (ATM) was significantly higher in 72 bladder cancer (BCa) tissue samples than in 24 samples of adjacent nonneoplastic tissue. The protein levels of PLCε and EXO1 showed appositive correlation in clinical bladder samples. Subsequent experiments showed that PLCε expression facilitated DNA repair in BCa by regulating ATM/EXO1 signaling. Additionally, we found that microRNA-145 is an antagonist of PLCε in T24 cells by directly targeting the 3'untranslated region of PLCε mRNA. Notably, microRNA-145 overexpression significantly increased the sensitivity to cisplatin, consistent with its PLCε silencing effect in BCa cells. Taken together, these findings reveal a novel physiological role for PLCε in DNA repair-related pathways with significant implications for the understanding of BCa biology.

10.
Onco Targets Ther ; 13: 4545-4558, 2020.
Article in English | MEDLINE | ID: mdl-32547085

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play a crucial role in gene expression regulation. CircHIPK3 is a circRNA derived from Exon 2 of HIPK3 gene and its role in prostate cancer (PCa) is still unclear. METHODS: CCK8 assays, flow cytometry and colony formation assays were performed to assess the effects of circHIPK3 in PCa cells. Bioinformatics analysis, RNA pull-down assay, RNA immunoprecipitation assay (RIP), and luciferase activity assay were performed to dissect the mechanism underlying circHIPK3-mediated G2/M transition in PCa cells. RESULTS: CircHIPK3 expression was upregulated in PCa cells and prostate cancer tissues. Overexpression of circHIPK3 or circHIPK3 silencing altered PCa viability, proliferation and apoptosis in vitro. CircHIPK3 could sponge miR-338-3p and inhibit its activity, resulting in increased expression of Cdc25B and Cdc2 in vitro. CONCLUSION: CircHIPK3 promotes G2/M transition and induces PCa cell proliferation by sponging miR-338-3p and increasing the expression of Cdc25B and Cdc2. CircHIPK3 may play an oncogenic role in PCa.

12.
Front Oncol ; 10: 75, 2020.
Article in English | MEDLINE | ID: mdl-32158687

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a progressed stage of prostate cancer, which requires better understanding of the mechanisms and remains an unmet clinical need. As a common oncogene, K-Ras is associated with malignant behavior in different types of tumors but its role in CRPC is unknown. The present study aims to find the mechanism of K-Ras in CRPC and whether it can be used as a crucial molecule for the treatment of CRPC. For this purpose, tissue samples from primary prostate cancer (PPC) and CRPC patients were analyzed by immunohistochemistry and the data showed that K-Ras was elevated in CRPC. More importantly, higher K-Ras expression was related to a shorter recurrence-free survival time in patients with CRPC. In addition, K-Ras promoted the invasion, migration, and drug resistance of CRPC cells by activation of PLCε/PKCε signaling pathway. Meanwhile, the inhibitor of K-RasG12C mutants was able to inhibit malignant behavior of CRPC cells in vitro and in vivo. Inhibitors of K-RasG12C mutants have entered clinical trials. Taken together, the study shows that K-Ras may activate PKCε through PLCε, resulting in the alterations of malignant behavior of CRPC. Inhibitor 9, an inhibitor of the K-RasG12C mutant, has a strong anti-tumor effect in CRPC, which potentially suggests that inhibitors of this nature may serve as a promising treatment for CRPC.

13.
Am J Cancer Res ; 10(1): 196-210, 2020.
Article in English | MEDLINE | ID: mdl-32064161

ABSTRACT

The metabolic reprogramming is an important basis for the development of many tumors, including prostate cancer (PCa). Metabolic changes in many amino acids consist of serine and glycine affect the biological behavior of them. Phospholipase C epsilon (PLCε) plays an important role as an oncogene. However, its role in regulating amino acid metabolism remains unclear. In this study, results found significantly positive correlation between PLCε and Yes-associated protein (YAP) in PCa tissues. LC-MS/MS and GC-MS results further displayed abnormally elevated levels of serine, glycine and its some downstream metabolites in the blood of PCa patients. Secondly, PLCε knockdown can inhibit serine/glycine producing and proliferation of PCa both in vivo and in vitro. Mechanistically, PLCε may affect the serine/glycine metabolism by regulating dephosphorylation and nuclear translocation of YAP. More interestingly, verteporfin (VP, a specific inhibitor of YAP) could effectively enhance the PLCε-depletion induced inhibition of serine/glycine secretion and growth. Overall, this research revealed the possibility of anomalous serine/glycine levels in the blood for the diagnosis of PCa, identified the important role of the PLCε/YAP axis in regulating serine/glycine metabolism, cell proliferation and tumor growth, and suggested the combination of VP with PLCε-depletion may provide a new idea for the treatment of PCa.

14.
Front Genome Ed ; 2: 618385, 2020.
Article in English | MEDLINE | ID: mdl-34713242

ABSTRACT

The CRISPR-Cas9 system enables simple, rapid, and effective genome editing in many species. Nevertheless, the requirement of an NGG protospacer adjacent motif (PAM) for the widely used canonical Streptococcus pyogenes Cas9 (SpCas9) limits the potential target sites. The xCas9, an engineered SpCas9 variant, was developed to broaden the PAM compatibility to NG, GAA, and GAT PAMs in human cells. However, no knockout rice plants were generated for GAA PAM sites, and only one edited target with a GAT PAM was reported. In this study, we used tRNA and enhanced sgRNA (esgRNA) to develop an efficient CRISPR-xCas9 genome editing system able to mutate genes at NG, GAA, GAT, and even GAG PAM sites in rice. We also developed the corresponding xCas9-based cytosine base editor (CBE) that can edit the NG and GA PAM sites. These new editing tools will be useful for future rice research or breeding, and may also be applicable for other related plant species.

16.
Mol Plant ; 13(1): 169-180, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31634585

ABSTRACT

The development of CRISPR/Cas9-mediated base editing has made genomic modification more efficient. However, selection of genetically modified cells from millions of treated cells, especially plant cells, is still challenging. In this study, an efficient surrogate reporter system based on a defective hygromycin resistance gene was established in rice to enrich base-edited cells. After step-by-step optimization, the Discriminated sgRNAs-based SurroGate system (DisSUGs) was established by artificially differentiating the editing abilities of a wild-type single guide RNA (sgRNA) targeting the surrogate reporter gene and an enhanced sgRNA targeting endogenous sites. The DisSUGs enhanced the efficiency of screening base-edited cells by 3- to 5-fold for a PmCDA1-based cytosine-to-tyrosine base editor (PCBE), and 2.5- to 6.5-fold for an adenine base editor (ABE) at endogenous targets. These targets showed editing efficiencies of <25% in the conventional systems. The DisSUGs greatly enhanced the frequency of homozygous substitutions and expanded the activity window slightly for both a PCBE and an ABE. Analyses of the total number of single-nucleotide variants from whole-genome sequencing revealed that, compared with the no-enrichment PCBE strategy, the DisSUGs did not alter the frequency of genome-wide sgRNA-independent off-target mutations, but slightly increased the frequency of target-dependent off-target mutations. Collectively, the DisSUGs developed in this study greatly enhances the efficiency of screening plant base-edited cells and will be a useful system in future applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Vectors/genetics , Genome, Plant , RNA, Guide, Kinetoplastida/genetics , Base Sequence , Gene Order , Genotype , Mutation , Oryza/genetics , Plant Cells , RNA, Guide, Kinetoplastida/chemistry , RNA, Plant/chemistry , RNA, Plant/genetics , Whole Genome Sequencing
17.
BMC Plant Biol ; 19(1): 511, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752697

ABSTRACT

BACKGROUND: Application of the CRISPR/Cas9 system or its derived base editors enables targeted genome modification, thereby providing a programmable tool to exploit gene functions and to improve crop traits. RESULTS: We report that PmCDA1 is much more efficient than rAPOBEC1 when fused to CRISPR/Cas9 nickase for the conversion of cytosine (C) to thymine (T) in rice. Three high-fidelity SpCas9 variants, eSpCas9(1.1), SpCas9-HF2 and HypaCas9, were engineered to serve with PmCDA1 (pBEs) as C-to-T base editors. These three high-fidelity editors had distinct multiplex-genome editing efficiencies. To substantially improve their base-editing efficiencies, a tandemly arrayed tRNA-modified single guide RNA (sgRNA) architecture was applied. The efficiency of eSpCas9(1.1)-pBE was enhanced up to 25.5-fold with an acceptable off-target effect. Moreover, two- to five-fold improvement was observed for knock-out mutation frequency by these high-fidelity Cas9s under the direction of the tRNA-modified sgRNA architecture. CONCLUSIONS: We have engineered a diverse toolkit for efficient and precise genome engineering in rice, thus making genome editing for plant research and crop improvement more flexible.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Deoxyribonuclease I/metabolism , Gene Editing , Oryza/genetics , RNA, Guide, Kinetoplastida/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Deoxyribonuclease I/genetics , Nucleotides/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Transfer/genetics
18.
J Exp Clin Cancer Res ; 38(1): 337, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31383001

ABSTRACT

BACKGROUND: Metabolic rewiring is a common feature of many cancer types, including prostate cancer (PCa). Alterations in master genes lead to mitochondrial metabolic rewiring and provide an appealing target to inhibit cancer progression and improve survival. Phospholipase C (PLC)ε is a regulator of tumor generation and progression. However, its role in mitochondrial metabolism remains unclear. METHODS: The GEO, The Cancer Genome Atlas, and the GTEx databases were used to determine Twist1 mRNA levels in tumors and their non-tumor counterparts. Fifty-five PCa and 48 benign prostatic hypertrophy tissue samples were tested for the presence of PLCε and Twist1 immunohistochemically. An association between PLCε and Twist1 was determined by Pearson's correlation analysis. PLCε was knocked down with a lentiviral short hairpin RNA. Mitochondrial activity was assessed by measuring the oxygen consumption rate. Western blotting analyses were used to measure levels of PPARß, Twist1, phosphorylated (p)-Twist1, p-MEK, p-ERK, p-P38, and p-c-Jun N-terminal kinase (JNK). Cells were treated with inhibitors of MEK, JNK, and P38 MAPK, and an agonist and inhibitor of peroxisome proliferator activated receptor (PPAR) ß, to evaluate which signaling pathways were involved in PLCε-mediated Twist1 expression. The stability of Twist1 was determined after blocking protein synthesis with cycloheximide. Reporter assays utilized E-cadherin or N-cadherin luciferase reporters under depletion of PLCε or Twist1. Transwell assays assessed cell migration. Finally, a nude mouse tumor xenograft assay was conducted to verify the role of PLCε in tumor formation. RESULTS: Our findings revealed that the expression of PLCε was positively associated with Twist1 in clinical PCa samples. PLCε knockdown promoted mitochondrial oxidative metabolism in PCa cells. Mechanistically, PLCε increased phosphorylation of Twist1 and stabilized the Twist1 protein through MAPK signaling. The transcriptional activity of Twist1, and the Twist1-mediated epithelial-to-mesenchymal transition, cell migration, and transcription regulation, were suppressed by PLCε knockdown and by blocking PPARß nuclear translocation. The tumor xenograft assay demonstrated that PLCε depletion diminished PCa cell tumorigenesis. CONCLUSIONS: These findings reveal an undiscovered physiological role for PLCε in the suppression of mitochondrial oxidative metabolism that has significant implications for understanding PCa occurrence and migration.


Subject(s)
Mitochondria/metabolism , Nuclear Proteins/metabolism , Oxidative Phosphorylation , Phosphoinositide Phospholipase C/metabolism , Prostatic Neoplasms/metabolism , Twist-Related Protein 1/metabolism , Adult , Aged , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Mitochondria/genetics , Models, Biological , Neoplasm Grading , Neoplasm Staging , Nuclear Proteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Transport , Twist-Related Protein 1/genetics
19.
Front Genet ; 10: 379, 2019.
Article in English | MEDLINE | ID: mdl-31134125

ABSTRACT

Base editors that do not require double-stranded DNA cleavage or homology-directed repair enable higher efficiency and cleaner substitution of targeted single nucleotides in genomic DNA than conventional approaches. However, their broad applications are limited within the editing window of several base pairs from the canonical NGG protospacer adjacent motif (PAM) sequence. In this study, we fused the D10A nickase of several Streptococcus pyogenes Cas9 (SpCas9) variants with Petromyzon marinus cytidine deaminase 1 (PmCDA1) and uracil DNA glycosylase inhibitor (UGI) and developed two new effective PmCDA1-based cytosine base editors (pBEs), SpCas9 nickase (SpCas9n)-pBE and VQR nickase (VQRn)-pBE, which expanded the scope of genome targeting for cytosine-to-thymine (C-to-T) substitutions in rice. Four of six and 12 of 18 target sites selected randomly in SpCas9n-pBE and VQRn-pBE, respectively were base edited with frequencies of 4-90% in T0 plants. The effective deaminase window typically spanned positions 1-7 within the protospacer and the single target C showed the maximum C-to-T frequency at or near position 3, counting the end distal to PAM as position 1. In addition, the modified single guide RNA (sgRNA) improved the base editing efficiencies of VQRn-pBE with 1.3- to 7.6-fold increases compared with the native sgRNA, and targets that could not be mutated using the native sgRNA were edited successfully using the modified sgRNA. These newly developed base editors can be used to realize C-to-T substitutions and may become powerful tools for both basic scientific research and crop breeding in rice.

20.
Methods ; 121-122: 94-102, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28315486

ABSTRACT

The increasing burden of the world's population on agriculture necessitates the development of more robust crops. As the amount of information from sequenced crop genomes increases, technology can be used to investigate the function of genes in detail and to design improved crops at the molecular level. Recently, an RNA-programmed genome-editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9 has provided a powerful platform to achieve these goals. By combining versatile tools to study and modify plants at different molecular levels, the CRISPR/Cas9 system is paving the way towards a new horizon for basic research and crop development. In this review, the accomplishments, problems and improvements of this technology in plants, including target sequence cleavage, knock-in/gene replacement, transcriptional regulation, epigenetic modification, off-target effects, delivery system and potential applications, will be highlighted.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Gene Knock-In Techniques , Gene Knockout Techniques , Gene Transfer Techniques , Plants/genetics , RNA, Guide, Kinetoplastida/genetics , Agrobacterium/genetics , Agrobacterium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural , DNA/genetics , DNA/metabolism , DNA End-Joining Repair , Endonucleases/genetics , Endonucleases/metabolism , Gene Targeting/methods , Genome, Plant , Plants, Genetically Modified , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL
...