Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(24)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38461551

ABSTRACT

The sensor, designed to be worn directly on the skin, is suitable for real-time monitoring of the recovery level of not only general wounds, but also difficult-to-heal wounds, such as those with chronic inflammation. Notably, healthy skin has a pH range of 4-6. When a wound occurs, the pH is known to be approximately 7.4. In this study, alpha-naphtholphthalein (Naph) was immersed in a cotton-blended textile to produce a wearable halochromic sensor that clearly changed color depending on the pH of the skin in the range 6-9, including pH 7.4, which is the skin infection state. The coating was performed without using an organic solvent by dissolving it in micelle form using cetyltrimethylammonium bromide, a surfactant, in water. Naph-based halochromic sensor shows light yellow, which is the dye's own color, at pH 6, which is a healthy skin condition, and gradually showed a clear color change to light green-green-blue as pH increased. Even after washing and drying by rubbing with regular tap water, the color change due to pH was maintained more than 10 times. Naph-based halochromic sensors use a simple solution production and coating method and are not only reusable sensors that can be washed with water but also use environmentally friendly water, making them very suitable for developing commercial products for wound pH monitoring. In addition, it can be easily applied to medical supplies, such as medical gauze, patient clothes, and compression bandages, as well as everyday wear, such as clothing, gloves, and socks. Therefore, it is expected to be widely used as a wound pH sensor, allowing real-time monitoring of the skin condition of individuals with chronic skin inflammation, including patients requiring wound recovery.


Subject(s)
Phenolphthaleins , Water , Wearable Electronic Devices , Humans , Cost-Benefit Analysis , Inflammation , Hydrogen-Ion Concentration
2.
RSC Adv ; 14(10): 6856-6864, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38410367

ABSTRACT

Among different heat-responsive polymers, hydroxypropyl cellulose (HPC) is biodegradable and is widely used in products that are harmless to the human body, such as food and pharmaceuticals. When the temperature of the hydrogel-type HPC increases, the hydrophilic bonds between the HPC molecules break, and the HPC molecules aggregate owing to the hydrophobic bonds. Therefore, light transmittance may vary because the aggregated HPC molecules scatter light. This study investigated the implementation of a display using the thermoreversible phase transition of HPC. Herein, a near-infrared (NIR) laser was irradiated only to a local area to control the surface temperature and enable the effective operation of the thermoreversible phase transition of HPC. For this, cesium tungsten oxide (CTO), which absorbs NIR light and generates heat, was mixed with the HPC hydrogel to improve the photothermal effect. Moreover, by additionally mixing carbon nanotubes (CNTs) with high thermal conductivity, the heat generated from the CTO is quickly transferred to the HPC hydrogel, and the heat of the HPC hydrogel is quickly cooled through the CNTs after stopping the NIR laser irradiation. The produced NIR-writing CTO-CNT-HPC (CCH) thermoresponsive display exhibited a fast thermoresponsive time. The CCH thermoresponsive display developed in this study can be applied in situations that require fast display response times, such as interactive advertising, property exhibitions, navigation systems for car, schedule information, event information, and public announcements.

3.
RSC Adv ; 14(9): 6156-6164, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38375008

ABSTRACT

Color-changing fibers, which can intuitively convey information to the human eye, can be used to facilely add functionality to various types of clothing. However, they are often expensive and complex, and can suffer from low durability. Therefore, in this study, we developed highly elastic and hydrophobic thermochromic fibers as wearable temperature sensors using a simple method that does not require an electric current. A thermochromic pigment was embedded inside and outside hydrophobic silica aerogel particles, following which the thermochromic aerogel was fixed to highly elastic spandex fibers using polydimethylsiloxane as a flexible binder. In particular, multi-strand spandex fibers were used instead of single strands, resulting in the thermochromic aerogels penetrating the inside of the strands upon their expansion by solvent swelling. During drying, the thermochromic aerogel adhered more tightly to the fibers by compressing the strands. The thermochromic fiber was purple at room temperature (25 °C), but exhibited a two-stage color change to blue and then white as the temperature increased to 37 °C. In addition, even after 100 cycles of tension-contraction at 200%, the thermochromic aerogel did not detach and was strongly attached to the fiber. Additionally, it was confirmed that color change due to temperature was stable even after exposure to 1 wt% NaCl (artificial sweat) and 0.1 wt% detergent solutions. The developed thermochromic fiber therefore exhibited excellent elasticity and hydrophobicity, and is expected to be widely utilized as an economical wearable temperature sensor as it does not require electrical devices.

4.
RSC Adv ; 12(35): 22351-22359, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36106006

ABSTRACT

Wearable fabric-type color conversion sensors are very effective in quickly expressing danger or warnings to people. In particular, they can visually show information regarding the external environment, such as its temperature or ultraviolet (UV) intensity. However, a wearable sensor worn on the human body should maintain its sensing performance without deterioration even when exposed to various external stimuli, such as the repeated movements caused by human activity, sweat, and washing. In this study, thermochromic and UV photochromic fibers were fabricated to maintain stable color conversion functionality in response to temperature and UV irradiation even after continuous tensile-shrinkage, exposure to sweat and detergent solution. The thermochromic or UV photochromic materials were coated on the inside and outside of strands constituting a highly elastic spandex fiber. By adding polydimethylsiloxane to the color-changing material, the physical and chemical stability of the color-conversion thin film coated on the strand increased. The fabricated thermochromic fiber had a blue-green color and changed to white as the temperature increased, whereas the fabricated UV photochromic fiber was white and changed to purple as the UV intensity increased. In addition, the color conversion coating film was not lost even when exposed to repeated stretching and sweat/washing solutions, and a stable color-change reactivity was maintained. The thermochromic and UV photochromic fibers introduced in this study are expected to contribute to the commercialization of wearable colorimetric sensors by solving the problems regarding the physical stimulation and washing stability of existing coating-type color conversion fibers and textiles.

5.
ACS Appl Mater Interfaces ; 13(34): 41046-41055, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34402614

ABSTRACT

Barcodes are utilized for product information management in shops, offices, hospitals, passenger facilities, and factories because they enable substantial amounts of data to be processed quickly and accurately. However, a limited amount of information can be loaded on the currently used monochrome barcodes that are based on thin-film coatings. Therefore, these barcodes require constant replacement with new barcodes to update the information; furthermore, they cannot be applied to textile products. This study demonstrated the performance of wearable invisible infrared (IR)-emitting barcodes by using twisted yarns that comprised five highly elastic/conductive spandex fibers. The barcode information can be actively updated via the selective IR emission from specific yarns of the barcode by controlling the applied voltage to the IR-emitting yarns. Therefore, the IR barcode required a relatively small number of bars to express a higher volume of information compared to the existing monochrome barcodes. Because the emitted IR light from the yarns was invisible to the human eye and was only recognized by an IR camera, the information-variable IR-emitting yarn-based barcode exhibited an aesthetic design and was composed of a sustainable fabric-type material that could be easily applied to clothes, bags, and shoes. It is expected that the fabricated barcode will be widely utilized as wearable invisible barcodes, whose information will remain invisible to humans and can be updated in real time to ensure information fluidity.

6.
ACS Appl Mater Interfaces ; 13(17): 20689-20697, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33890461

ABSTRACT

A smart window, which can easily adjust light transmittance, can provide barrier functions, such as improvement in energy efficiency, glare prevention, and privacy protection. However, a smart window that can selectively provide real-time information and display various colorful characters and images at a desired location has not been developed. In this study, a novel smart window capable of real-time information conversion is developed by advancing the light transmittance control of the existing smart windows. A transparent and flexible window display is fabricated by synthesizing poly(N-isopropylacrylamide) (pNIPAM)-N,N-methylenebisacrylamide-crosslinked hydrogels (NBcH) and near-infrared (NIR) absorption-heating films sandwiched between two plastic substrates. When the NIR laser irradiates the window display panel surface, the temperature rises rapidly, as the NIR absorption-heating film absorbs the NIR wavelength. The generated heat is transferred to pNIPAM in contact with the NIR absorption-heating film, and an image forms in real time. In addition, if the NIR laser and projector simultaneously irradiate the window display panel surface, various colorful images can be displayed. The smart window for real-time information provision proposed in this study acts like a glass curtain that can selectively make a desired location transparent or opaque by controlling the transmittance of light and acts as a display that can present various colorful characters and images in real time. Therefore, it is expected to be highly convenient for users.

SELECTION OF CITATIONS
SEARCH DETAIL
...