Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 144(23): 234902, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27334189

ABSTRACT

Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

2.
J Phys Chem B ; 119(37): 12325-35, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26305980

ABSTRACT

A novel method was previously reported for detecting the glass transition of thin polystyrene (PS) films by correlating the relationships between the temperature-dependent viscoelasticity of the PS films and stick-slip behavior on their surfaces during dynamic wetting of liquid droplets. In the present study, the frequency dependence of the stick-slip behavior is investigated. The results show that the stick-slip behavior of liquid dynamic wetting on PS films is dependent on the contact line velocity, which is related to the deformation frequency of the PS surface during the moving liquid front. The stick-slip behavior was revealed to be determined by a dimensionless parameter (ξ), which is the ratio of the PS segmental relaxation time (τα) and the characteristic time (τc) for PS surface deformation near the droplet contact line. When ξ is close to 1 (τα ≈ τc), the Δθ (jumping angle), a scale of the stick-slip behavior, reaches a maximum. This correlation between Δθ and ξ demonstrates that the stick-slip behavior is related to the energy dissipation caused by the PS α-relaxation process, and the peak temperature (or frequency) in Δθ corresponds to the α-relaxation temperature (time) of the polymer. These results strongly demonstrate that the utilization of the stick-slip behavior is a creditable method, similar to dynamic viscoelastic measurement, for probing the glass transition and segmental relaxation of thin polymer films.

3.
J Mater Chem B ; 3(21): 4388-4400, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-32262782

ABSTRACT

Acrylate block polymer brushes (Au-PMMA65-b-PODMAy-ec-FMA2) with two 2-perfluorooctylethyl methacrylate units at the brush end were successfully prepared on an Au substrate using a "grafting to" method. Characterization by XPS, contact angle measurement, ellipsometry and nanomechanical measurement showed that a well-ordered and perpendicularly oriented structure of the perfluoroalkyl side chains on the brush surface was enhanced with an increasing degree of polymerization (y) of poly (n-octadecyl methacrylate), and a crystalline structure of perfluoroalkyl side chains formed when y was equal to 24. Protein adsorption studies indicated that the adsorbed mass of fibrinogen decreased with an increasing order of the structure of the perfluoroalkyl side chains at the brush end. When the perfluoroalkyl group on the brush surface formed a crystal structure, there was only trace fibrinogen adsorption on the brush surface. This work demonstrates that the protein-resistant performance was enhanced greatly by constructing polymer brush surfaces with well-ordered and perpendicularly oriented structures of the perfluoroalkyl side chains.

4.
Soft Matter ; 10(33): 6347-56, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25036734

ABSTRACT

The effect of the concentration of casting solutions on the surface dynamics of the corresponding spin-coated poly(methyl methacrylate) (PMMA) film was investigated by measuring the surface reorganization of fluorine tracer-labeled PMMA. The onset temperature of fluorinated PMMA chain end reorganization (T(onsetR)) was identified and is shown to depend on the PMMA concentration in the film-forming solution. It was found that the surface T(onsetR) and relaxation activation energy E(a) of the PMMA films prepared from 4.2 wt% PMMA cyclohexanone solution are 70 °C and 260 kJ mol(-1), respectively, which are higher than those of the PMMA films prepared from 0.8 wt% PMMA cyclohexanone solution (55 °C and 144 kJ mol(-1), respectively). The T(onsetR) and E(a) of PMMA films increased with increasing concentration of casting solutions within the range of 1.8 wt% to 4 wt%. The chain entanglement of PMMA chains is proposed to be the speculative origin for these observed depressed dynamics of poly(methyl methacrylate) chains on the films' surface prepared using casting solutions of various concentrations.

5.
J Colloid Interface Sci ; 359(1): 269-78, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21489547

ABSTRACT

The effects of the alkyl group on the surface segregation of poly(n-alkyl methacrylate) end-capped with various numbers of units of 2-perfluorooctylethyl methacrylate (FMA) (PnAMA-ec-PFMA) were investigated by differential scanning calorimetry, angle-resolved XPS analysis, contact angle measurements, and X-ray diffraction (XRD). The results show that with similar numbers of FMA units at the polymer chain end the extent of fluorine segregation (Q) increased with increasing the number of carbon atoms in the side n-alkyl chains of poly(n-alkyl methacrylate). The surface fluorine content within 5 nm deep of the film of poly(n-octadecyl methacrylate) end-capped with one FMA unit (PODMA(160)-ec-PFMA(1.0)) was 208-fold higher than that of the bulk level. These observed differences in Q values were found due to the aggregate structure of the end-capped polymers in the solution, the flexibility, and the crystallinity of the n-alkyl side chains. When the nonfluorinated block was completely amorphous, the molecular aggregate structure of the end-capped polymers in the solution played an important role in the surface segregation of the fluorinated moieties on the resulting film. However, when the nonfluorinated block was crystalline, crystallinity would enhance greatly the segregation of the fluorinated moieties.


Subject(s)
Membranes, Artificial , Polymethacrylic Acids/chemistry , Surface Properties
6.
Macromol Biosci ; 9(12): 1281-6, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19953521

ABSTRACT

The enzymatic degradation behavior of poly(butylene succinate) (PBS) single crystals with a lipase from Pseudomonas cepacia (lipase PS) is monitored using atomic force microscopy (AFM) in phosphate buffer at pH 6.8 and 40 degrees C. In-situ AFM results show that enzymatic degradation of the single crystal starts from the crystal edges rather than the chain-folded surfaces and the lamellar thickness remains constant during the whole degradation process. Total internal reflection fluorescence microscopy (TIRFM) is used for the first time to study the adsorption behavior of lipase onto the PBS crystal surface. The results clearly show that the enzyme molecules preferentially adsorb on the lateral surfaces of the single crystal but not on the chain-folded surfaces. AFM force-distance curve measurements and force-volume imaging obtained using a lipase-immobilized AFM tip show that small and large adhesive forces exist in the flat-on and edge-on areas of a PBS banded spherulite, respectively, which correspond to the chain-folded surface and lateral edges of a single crystal.


Subject(s)
Butylene Glycols/metabolism , Enzymes, Immobilized/metabolism , Lipase/metabolism , Polymers/metabolism , Adsorption , Butylene Glycols/chemistry , Microscopy, Atomic Force , Polymers/chemistry
7.
J Colloid Interface Sci ; 306(2): 337-44, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17118385

ABSTRACT

To clarify the cause of time-dependent separation behavior, the pervaporation performance with operating time through pure poly(vinyl alcohol) (PVA) membrane and glutaraldehyde (GA) cross-linked PVA membranes was investigated. The results showed that the water concentration in the permeate for the air-side surface of the PVA membrane increased dramatically from 92.2 to 95.7% in about 110 min and then remained almost unchanged. However, the water selectivity for the glass-side surface did not change with operating time. Similar results were observed for the GA cross-linked PVA membranes. Furthermore, the contact angle of water on the air-side surfaces of those membranes decreased with the time of contact with the feed. These results revealed that this dynamic pervaporation process was mainly attributable to the reconstruction of hydroxyl groups at the air-side surfaces of PVA membranes in response to the change of their surrounding medium during pervaporation. The reconstruction at the glass-side surface of the membrane did not occur because of the preferential localization of hydroxyl groups at the interface between the membrane and the glass plate during film formation of PVA solution. The above conclusion was further confirmed by the following results. The water concentration in the permeate through PVA membranes with the air-side surface facing the feed reached equilibrium more quickly with increasing operation temperature or decreasing degree of cross-linking, which was consistent with the fact that the rate of surface reconstruction accelerated with the increase of temperature or the decrease of the degree of cross-linking.

SELECTION OF CITATIONS
SEARCH DETAIL
...