Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37580494

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Vincamine , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Monoterpenes/chemistry , Monoterpenes/pharmacology , Receptors, G-Protein-Coupled , Sciatic Nerve/pathology , Signal Transduction , Vincamine/pharmacology , Vincamine/therapeutic use
2.
Acta Pharmacol Sin ; 43(10): 2495-2510, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35260821

ABSTRACT

Diabetic cognitive impairment (DCI) is a common diabetic complication characterized by learning and memory deficits. In diabetic patients, hyperactivated hypothalamic-pituitary-adrenal (HPA) axis leads to abnormal increase of glucocorticoids (GCs), which causes the damage of hippocampal neurons and cognitive impairment. In this study we investigated the cognition-improving effects of a non-steroidal glucocorticoid receptor (GR) antagonist 5-chloro-N-[4-chloro-3-(trifluoromethyl) phenyl]thiophene-2-sulfonamide (FX5) in diabetic mice. Four weeks after T1DM or T2DM was induced, the mice were administered FX5 (20, 40 mg·kg-1·d-1, i.g.) for 8 weeks. Cognitive impairment was assessed in open field test, novel object recognition test, Y-maze test, and Morris water maze test. We showed that FX5 administration significantly ameliorated the cognitive impairments in both type 1 and 2 diabetic mice. Similar cognitive improvement was observed in diabetic mice following brain GR-specific knockdown by injecting AAV-si-GR. Moreover, AAV-si-GR injection occluded the cognition-improving effects of FX5, suggesting that FX5 functioning as a non-steroidal GR antagonist. In PA-treated primary neurons (as DCI model in vitro), we demonstrated that FX5 (2, 5, 10 µM) dose-dependently ameliorated synaptic impairment via upregulating GR/BDNF/TrkB/CREB pathway, protected against neuronal apoptosis through repressing GR/PI3K/AKT/GSK3ß-mediated tauopathy and subsequent endoplasmic reticulum stress. In LPS-treated primary microglia, FX5 dose-dependently inhibited inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway. These beneficial effects were also observed in the hippocampus of diabetic mice following FX5 administration. Collectively, we have elucidated the mechanisms underlying the beneficial effects of non-steroidal GR antagonist FX5 on DCI and highlighted the potential of FX5 in the treatment of the disease.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Caspases/metabolism , Cognitive Dysfunction/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Lipopolysaccharides/pharmacology , Maze Learning , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Glucocorticoid/metabolism , Sulfonamides/pharmacology , Thiophenes/pharmacology
3.
Acta Pharmacol Sin ; 43(9): 2226-2241, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35091686

ABSTRACT

Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERß is largely distributed in the hippocampus and cardiovascular system, suggesting that ERß selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERß agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERß with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 µM) dose-dependently increased phagocytosis of o-FAM-Aß42 in primary microglia and BV2 cells through enhancing ERß/TLR4 signaling; PTA treatment ameliorated o-Aß25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERß/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aß25-35-induced oxidative stress in primary neurons through targeting ERß and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERß agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Catalase/metabolism , Disease Models, Animal , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Hippocampus/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/drug therapy , Presenilin-1 , Sesquiterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...