Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; : 133440, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944075

ABSTRACT

BACE1, a crucial enzyme in the amyloid-ß deposition theory of Alzheimer's disease (AD), is targeted by Codonopsis pilosula, a traditional tonic believed to impede AD onset. However, the specific active compounds responsible for its effects remain elusive. Our prior network pharmacology research identified C. pilosula polysaccharides (CPPS) and Lobetyolin may serve as potential inhibitors of AD by suppressing amyloidogenesis. Here, we recombinantly expressed BACE1 under varied conditions and assessed its activity using Fluorescence Resonance Energy Transfer technology. Through spectroscopy, molecular docking, and dynamics, we elucidated the interactions of CPPS, Lobetyolin, and BACE1. Optimal BACE1 expression occurred at 22 °C with 0.4 mM IPTG for 6 h, yielding a 72 kDa protein. Enzyme kinetics displayed a maximum rate of 4096 µmol/min and a Michaelis constant of 16 mg/mL for BACE1. Spectroscopic analysis revealed differing binding affinities of the compounds at various temperatures, peaking at 293 K. Lobetyolin exhibited superior binding to BACE1 compared to CPPS, driven by hydrophobic and electrostatic forces. Molecular docking and dynamics highlighted hydrophobic amino acids' role in BACE1 interactions with Lobetyolin and CPPS, with binding energy < -1.2 kcal/mol signifying strong affinities. Notably, Lobetyolin and CPPS showed higher BACE1 affinity than APP, with the Lobetyolin-BACE1 complex being the most stable.

2.
Life (Basel) ; 13(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38004343

ABSTRACT

Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of ß-amyloid (Aß) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aß deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.

3.
J Biomater Appl ; 36(10): 1723-1736, 2022 05.
Article in English | MEDLINE | ID: mdl-35235468

ABSTRACT

In this study, after optimizing the extraction process of CPP (Codonopsis pilosula polysaccharides), CPPM (CPP microcapsules) were prepared. Subsequently, the structural characteristics and physicochemical properties were studied. The results showed that CPPM is a hollow sac-like structure with rough folds and protuberances and comes in spherical or ellipsoidal shapes with uniform particle size. CPPM has certain swelling degree, low hardness, good adhesion, and stability. Then, the effect of CPPM on wounds repair was investigated by a rat model. The results showed that CPPM could improve the wound healing rate. Histological evaluation showed CPPM could promote neovascularization and fibroblast proliferation. By investigating the healing mechanism, it was found that CPPM increased the hydroxyproline content in granulation tissue and had an excellent antioxidant ability, and then inhibited lipid peroxidation, in addition, it significantly increased the transcript levels of VEGF and miRNA-21 genes, indicating that CPPM play an influential role in vascular remodeling during wound healing by up-regulating the expression of VEGF and miRNA-21 genes.


Subject(s)
Codonopsis , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Capsules/chemistry , Codonopsis/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Rats , Wound Healing
4.
Biosci. j. (Online) ; 33(3): 713-720, may/jun. 2017. ilus, tab
Article in English | LILACS | ID: biblio-966230

ABSTRACT

Cd is a highly detrimental global environmental pollutant. Plants have evolved complex defense mechanisms as an adaptation to against Cd toxicity. In this study, a pot experiment was performed to evaluate the protein profile of saffron in response to Cd stress. Fifteen proteins were found to be up-regulated in the leaves of plants under Cd stress and were primarily related to metabolism, signal transduction, stress and defense response and energy. Eleven proteins were found to be down-regulated following Cd treatment, including ribulose bisphosphate carboxylase/oxygenase (Rubisco), ferredoxin-NADP reductase, a 70 kDa heat shock-related protein and three protein synthesis-associated proteins. The results provide valuable insights regarding the molecular mechanism of saffron in response to Cd toxicity and the possible utilization of genetic resources in developing Cd tolerant/low-accumulation saffron.


O cádmio (Cd) é um poluente ambiental global altamente prejudicial. As plantas desenvolveram mecanismos de defesa complexos como uma adaptação contra a toxicidade por Cd. Neste estudo, realizou-se um experimento em vaso para avaliar o perfil proteico do açafrão em resposta ao estresse por Cd. Foi descoberto que quinze proteínas foram supra-reguladas (up-regulated) nas folhas de plantas sob estresse por Cd e foram principalmente relacionados ao metabolismo, transdução de sinal, estresse e resposta de defesa e energia. Foi descoberto ainda que onze proteínas foram infra-reguladas (down-regulated) após tratamento com Cd, incluindo ribulose bifosfato carboxilase oxigenase (RuBisCO), ferredoxina-NADP redutase, uma proteína relacionada com o choque térmico de 70 kDa e três proteínas associadas à síntese de proteínas. Os resultados fornecem informações valiosas sobre o mecanismo molecular do açafrão em resposta à toxicidade do Cd e a possível utilização de recursos genéticos no desenvolvimento de açafrão tolerante ao Cd e de baixa acumulação.


Subject(s)
Photosynthesis , Cadmium , Metals, Heavy , Proteome , Crocus
SELECTION OF CITATIONS
SEARCH DETAIL
...