Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276732

ABSTRACT

Perovskite solar cells (PSCs) have been significantly improved by utilizing an inorganic hole-transporting layer (HTL), such as nickel oxide. Despite the promising properties, there are still limitations due to defects. Recently, research on self-assembled monolayers (SAMs) is being actively conducted, which shows promise in reducing defects and enhancing device performance. In this study, we successfully engineered a p-i-n perovskite solar cell structure utilizing HC-A1 and HC-A4 molecules. These SAM molecules were found to enhance the grain morphology and uniformity of the perovskite film, which are critical factors in determining optical properties and device performance. Notably, HC-A4 demonstrated superior performance due to its distinct hydrophilic properties with a contact angle of 50.3°, attributable to its unique functional groups. Overall, the HC-A4-applied film exhibited efficient carrier extraction properties, attaining a carrier lifetime of 117.33 ns. Furthermore, HC-A4 contributed to superior device performance, achieving the highest device efficiency of 20% and demonstrating outstanding thermal stability over 300 h.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049246

ABSTRACT

We have investigated the effects of the methylammonium bromide (MABr) content of the precursor solution on the properties of wide-bandgap methylammonium lead tribromide (MAPbBr3) perovskite solar cells (PSCs). In addition, the anti-solvent process for fabricating MAPbBr3 perovskite thin films was optimized. The MAPbBr3 precursor was prepared by dissolving MABr and lead bromide (PbBr2) in N,N-dimethylformamide and N,N-dimethyl sulfoxide. Chlorobenzene (CB) was used as the anti-solvent. We found that both the morphology of the MAPbBr3 layer and the PSCs performance are significantly affected by the MABr content in perovskite precursor solution and anti-solvent dripping time. The best-performing device was obtained when the molar ratio of MABr:PbBr2 was 1:1 and the CB drip time was 10 s. The best device exhibited a power conversion efficiency of 7.58%, short-circuit current density of 7.32 mA·cm-2, open-circuit voltage of 1.30 V, and fill factor of 79.87%.

3.
ACS Appl Mater Interfaces ; 14(31): 35726-35733, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35904868

ABSTRACT

Perovskite solar cells (PSCs) have been receiving considerable attention as next-generation solar cells. However, their short lifetime is a major obstacle to their commercialization. In addition to the properties of the materials used in PSCs, their interfaces play an important role in device stability by maintaining their initial design. In this study, we developed a transition-metal dichalcogenide (TMD) as a stable and efficient interlayer. MoS2 and WSe2 were applied to both the hole and electron transport sides of the PSCs with general FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au structures, respectively. Owing to efficient charge transfer by TMD interlayers, our PSCs achieved a 19.24% efficiency, which is higher than the efficiency of the control devices (18.22%). Furthermore, the device stability was markedly improved by the passivation and strain-release effects of the TMD interlayers. Thus, the PSCs with TMD interlayers demonstrated a stable performance over 1000 h under damp heat (85 °C and 85% relative humidity) conditions.

4.
ACS Appl Mater Interfaces ; 14(4): 5203-5210, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35050584

ABSTRACT

Recent studies have demonstrated that copper (I) thiocyanate (CuSCN) has huge potential as a hole extraction material (HEM) for perovskite solar cells. Here, we used CuSCN as a HEM and analyzed its relationships with a methylammonium lead iodide (MAPbI3) perovskite layer. The CuSCN dissolved in diethyl sulfide (DES) was spin-coated on the MAPbI3 layer. For high-quality and dense CuSCN layers, post-annealing was carried out at various temperatures and times. However, the unwanted dissociation of MAPbI3 to PbI2 was observed due to the post-annealing for a long time at elevated temperatures. In addition, DES, which is used as a CuSCN solvent, is a polar solvent that damages the surface of MAPbI3 perovskites and causes poor interfacial properties between the perovskite layer and HEM. To solve this problem, the effect of the molar ratio of methylammonium iodide (MAI) and PbI2 in the MAPbI3 precursor solution was investigated. The excess MAI molar ratio in the MAPbI3 precursor solution reduced MAPbI3 surface damage despite using DES polar solvent for CuSCN solution. In addition, dissociation of MAPbI3 to PbI2 following an adequate post-annealing process was well suppressed. The excess MAI molar ratio in the MAPbI3 precursor could be compensated for the MA loss and effectively suppress phase separation from MAPbI3 to MAI + PbI2 during post-annealing. The efficiency based on the normal planar structure of CuSCN/MAPbI3 (using excess MAI)/TiO2 was approximately 17%. The CuSCN-based MAPbI3 device shows more optimized stability than the conventional spiro-OMeTAD under damp heat (85 °C and 85% relative humidity) conditions because of the robust inorganic HEM.

5.
Sci Rep ; 10(1): 16286, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33005014

ABSTRACT

Three-dimensional stackable memory frames involving the integration of two-terminal scalable crossbar arrays are expected to meet the demand for high-density memory storage, fast switching speed, and ultra-low power operation. However, two-terminal crossbar arrays introduce an unintended sneak path, which inevitably requires bidirectional nonlinear selectors. In this study, the advanced threshold switching (TS) features of ZnTe chalcogenide material-based selectors provide bidirectional threshold switching behavior, nonlinearity of 104, switching speed of less than 100 ns, and switching endurance of more than 107. In addition, thermally robust ZnTe selectors (up to 400 â„ƒ) can be obtained through the use of nitrogen-annealing treatment. This process can prevent possible phase separation phenomena observed in generic chalcogenide materials during thermal annealing which occurs even at a low temperature of 250 â„ƒ. The possible characteristics of the electrically and thermally advanced TS nature are described by diverse structural and electrical analyses through the Poole-Frankel conduction model.

6.
Sci Rep ; 9(1): 3666, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30842464

ABSTRACT

The illuminated current-voltage characteristics of Cu(In,Ga)(S,Se)2 (CIGSSe) thin film solar cells fabricated using two different buffer layer processes: chemical bath deposition (CBD) and atomic layer deposition (ALD) were investigated. The CIGSSe solar cell with the ALD buffer showed comparable conversion efficiency to the CIGSSe solar cell with CBD buffer but lower shunt resistance even though it showed lower point shunt defect density as measured in electroluminescence. The shunt paths were investigated in detail by capturing the high-resolution dark lock-in thermography images, resolving the shunt resistance contributions of the scribing patterns (P1, P3), and depth profiling of the constituent elements. It was found that the concentration of Na from the soda-lime glass substrate played a key role in controlling the shunt paths. In the ALD process, Na segregated at the surface of CIGSSe and contributed to the increase in the shunt current through P1 and P3, resulting in a reduction in the fill factor of the CIGSSe solar cells.

7.
Sci Rep ; 8(1): 11065, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30038327

ABSTRACT

Electrical manipulation of magnetization states has been the subject of intense focus as it is a long-standing goal in the emerging field of spintronics. In particular, torque generated by an in-plane current with a strong spin-orbit interaction shows promise for control of the adjacent ferromagnetic state in heavy-metal/ferromagnet/oxide frames. Thus, the ability to unlock precise spin orbit torque-driven effective fields represents one of the key approaches in this work. Here, we address an in-plane direct current measurement approach as a generic alternative tool to identify spin orbit torque-driven effective fields in a full polar angle range without adopting the commonly used harmonic analyses. Our experimental results exhibited a strongly polar angular dependency of the spin orbit torque-driven effective fields observed from Ta or W/CoFeM/MgO frames.

8.
Sci Rep ; 6: 30554, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27476672

ABSTRACT

Defect depth profiles of Cu (In1-x,Gax)(Se1-ySy)2 (CIGSS) were measured as functions of pulse width and voltage via deep-level transient spectroscopy (DLTS). Four defects were observed, i.e., electron traps of ~0.2 eV at 140 K (E1 trap) and 0.47 eV at 300 K (E2 trap) and hole traps of ~0.1 eV at 100 K (H1 trap) and ~0.4 eV at 250 K (H2 trap). The open circuit voltage (VOC) deteriorated when the trap densities of E2 were increased. The energy band diagrams of CIGSS were also obtained using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and DLTS data. These results showed that the valence band was lowered at higher S content. In addition, it was found that the E2 defect influenced the VOC and could be interpreted as an extended defect. Defect depth profile images provided clear insight into the identification of defect state and density as a function of depth around the space charge region.

9.
Ultramicroscopy ; 108(10): 1215-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18562118

ABSTRACT

Charge trapping properties of electrons and holes in Au nanoparticles embedded in metal-insulator-semiconductor (MIS) on p-type Si (100) substrates were investigated by electrostatic force microscopy (EFM). The Au nanoparticles were prepared with a unique laser irradiation method and charged by applying a bias voltage between EFM tip and sample. The EFM system was used to image charged areas and to determine quantitatively the amount of stored charge in the Au nanoparticle-inserted MIS structure. In addition, charge trapping characteristics of the samples were carried out with electrical measurements, such as capacitance-voltage and current-voltage measurement for memory characteristics. Finally, the comparison of EFM results with the electrically measured data was done to determine the amount of stored charge in the Au nanoparticle-inserted MIS structure, confirming the usefulness of EFM system for the characterization of nanoparticle-based non-volatile devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...