Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.730
Filter
3.
Sci Rep ; 14(1): 11536, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773201

ABSTRACT

Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.


Subject(s)
Aging , Animals , Mice , Aging/drug effects , Aging/physiology , Male , Pain Threshold/drug effects , Pain/drug therapy , Ganoderma/chemistry , Disease Models, Animal , Pain Measurement
4.
PeerJ ; 12: e17391, 2024.
Article in English | MEDLINE | ID: mdl-38784388

ABSTRACT

Objective: To evaluate the efficacy and safety of cetuximab instead of cisplatin in combination with downstaging radiotherapy for papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma (HPV+ OPSCC). Design: Meta-analysis and systematic evaluation. Data sources: The PubMed, Embase, Web of Science, and Cochrane library databases were searched up to June 8, 2023, as well as Clinicaltrials.gov Clinical Trials Registry, China Knowledge Network, Wanfang Data Knowledge Service Platform, and Wiprojournal.com. Eligibility criteria for selecting studies: Randomized controlled trials reporting results of standard regimens of cetuximab + radiotherapy vs cisplatin + radiotherapy in treating HPV+ OPSCC were included. The primary outcomes of interest were overall survival (OS), progression-free survival (PFS), local regional failure rate (LRF), distant metastasis rate (DM), and adverse events (AE). Data extraction and synthesis: Two reviewers independently extracted data and assessed the risk of bias of the included studies. The HR and its 95% CI were used as the effect analysis statistic for survival analysis, while the OR and its 95% CI were used as the effect analysis statistic for dichotomous variables. These statistics were extracted by the reviewers and aggregated using a fixed-effects model to synthesise the data. Results: A total of 874 relevant papers were obtained from the initial search, and five papers that met the inclusion criteria were included; a total of 1,617 patients with HPV+ OPSCC were enrolled in these studies. Meta-analysis showed that OS and PFS were significantly shorter in the cetuximab + radiotherapy group of patients with HPV+ OPSCC compared with those in the conventional cisplatin + radiotherapy group (HR = 2.10, 95% CI [1.39-3.15], P = 0.0004; HR = 1.79, 95% CI [1.40-2.29], P < 0.0001); LRF and DM were significantly increased (HR = 2.22, 95% CI [1.58-3.11], P < 0.0001; HR = 1.66, 95% CI [1.07-2.58], P = 0.02), but there was no significant difference in overall grade 3 to 4, acute and late AE overall (OR = 0.86, 95% CI [0.65-1.13], P = 0.28). Conclusions: Cisplatin + radiotherapy remains the standard treatment for HPV+ OPSCC. According to the 7th edition AJCC/UICC criteria, low-risk HPV+ OPSCC patients with a smoking history of ≤ 10 packs/year and non-pharyngeal tumors not involved in lymphatic metastasis had similar survival outcomes with cetuximab/cisplatin + radiotherapy. However, further clinical trials are necessary to determine whether cetuximab + radiotherapy can replace cisplatin + radiotherapy for degraded treatment in individuals who meet the aforementioned characteristics, particularly those with platinum drug allergies. Prospero registration number: CRD42023445619.


Subject(s)
Cetuximab , Chemoradiotherapy , Cisplatin , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Cetuximab/therapeutic use , Cetuximab/adverse effects , Cetuximab/administration & dosage , Oropharyngeal Neoplasms/virology , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/therapy , Oropharyngeal Neoplasms/drug therapy , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Papillomavirus Infections/virology , Papillomavirus Infections/mortality , Prognosis , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/therapy , Neoplasm Staging , Papillomaviridae , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/adverse effects , Progression-Free Survival , Human Papillomavirus Viruses
5.
Neural Netw ; 176: 106380, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38754289

ABSTRACT

Most trackers formulate visual tracking as common classification and regression (i.e., bounding box regression) tasks. Correlation features that are computed through depth-wise convolution or channel-wise multiplication operations are input into both the classification and regression branches for inference. However, this matching computation with the linear correlation method tends to lose semantic features and obtain only a local optimum. Moreover, these trackers use an unreliable ranking based on the classification score and the intersection over union (IoU) loss for the regression training, thus degrading the tracking performance. In this paper, we introduce a deformable transformer model, which effectively computes the correlation features of the training and search sets. A new loss called the quality-aware focal loss (QAFL) is used to train the classification network; it efficiently alleviates the inconsistency between the classification and localization quality predictions. We use a new regression loss called α-GIoU to train the regression network, and it effectively improves localization accuracy. To further improve the tracker's robustness, the candidate object location is predicted by using a combination of online learning scores with a transformer-assisted framework and classification scores. An extensive experiment on six testing datasets demonstrates the effectiveness of our method. In particular, the proposed method attains a success score of 71.7% on the OTB-2015 dataset and an AUC score of 67.3% on the NFS30 dataset, respectively.

6.
Heliyon ; 10(10): e31044, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803906

ABSTRACT

This study explores the applications of virtual scenario learning in addressing the global issue of school bullying through digital educational tools. Previous research suggests that virtual role-playing experiences can reduce bullying incidents; however, experiencing the victim role can evoke negative emotions, while the bystander role may not fully convey the severity of bullying. This study aims to investigate the effects of a multi-role experience-based virtual scenario learning model on learners by integrating the advantages of both roles. This study employed a quasi-experimental research method, which involved grouping 56 fourth-grade elementary school students in Taipei City, Taiwan, into an experimental group and a control group. The experimental group utilized the multi-role experience-based virtual scenario learning model, while the control group utilized a single-role experience-based model. The study compared the differences in academic achievement, empathy, and problem-solving tendencies between the two groups. The findings indicate that the experimental group significantly excelled over the control group in academic achievement, empathy, and problem-solving tendencies. The multi-role experience-based virtual scenario learning model effectively nurtures students' empathy and considerably enhances learners' awareness of campus bullying.

7.
J Agric Food Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807413

ABSTRACT

The extensive and repeated application of chemical fungicides results in the rapid development of fungicide resistance. Novel antifungal pesticides are urgently required. Natural products have been considered precious sources of pesticides. It is necessary to discover antifungal pesticides by using natural products. Herein, 42 various griseofulvin derivatives were synthesized. Their antifungal activities were evaluated in vitro. Most of them showed good antifungal activity, especially 3d exhibited a very broad antifungal spectrum and the most significant activities against 7 phytopathogenic fungi. In vivo activity results suggested that 3d protected apples and tomatoes from serious infection by phytopathogenic fungi. These proved that 3d had the potential to be a natural product-derived antiphytopathogenic fungi agent. Furthermore, docking analysis suggested that tubulin might be one of the action sites of 3d. It is reasonable to believe that griseofulvin derivatives are worth further development for the discovery of new pesticides.

8.
J Control Release ; 370: 318-338, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38692438

ABSTRACT

In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.

9.
J Chemother ; : 1-12, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706347

ABSTRACT

Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.

10.
Front Neurosci ; 18: 1401530, 2024.
Article in English | MEDLINE | ID: mdl-38741786

ABSTRACT

Introduction: Sleep insufficiency has been linked to an increased risk of high blood pressure and cardiovascular diseases. Emerging studies have demonstrated that impaired baroreflex sensitivity (BRS) is involved in the adverse cardiovascular effects caused by sleep deprivation, however, the underlying mechanisms remain unknown. Therefore, the present study aims to clarify the role of abnormal renin-angiotensin system in the nucleus tractus solitarii (NTS) in impaired BRS induced by sleep deprivation. Methods: Rats were randomly divided into two groups: normal sleep (Ctrl) and chronic sleep deprivation (CSD) group. Rats were sleep deprived by an automated sleep deprivation system. The blood pressure, heart rate, BRS, the number of c-Fos positive cells and the expression of angiotensin (Ang) II subtype 1 receptors (AT1R) in the NTS of rats were assessed. Results: Compared to Ctrl group, CSD group exhibited a higher blood pressure, heart rate, and reduced BRS. Moreover, the number of c-Fos positive cells and local field potential in the NTS in CSD group were increased compared with the Ctrl group. It was shown that the expression of the AT1R and the content of Ang II and the ratio of Ang II to Ang-(1-7) were increased in the NTS of rats in CSD group compared to Ctrl group. In addition, microinjection of losartan into the NTS significantly improved the impaired BRS caused by sleep deprivation. Discussion: In conclusion, these data suggest that the elevated AT1R expression in the NTS mediates the reduced BRS induced by chronic sleep deprivation.

11.
ACS Infect Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743862

ABSTRACT

Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.

12.
Mol Nutr Food Res ; : e2300898, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752791

ABSTRACT

SCOPE: Active ingredients in functional foods exhibit broad-spectrum antiviral activity. The objective of this study is to investigate the protective effect of quercetin derived from bee propolis, a natural product with antiviral activity and modulating effects on the gut microbiota, against vesicular stomatitis virus (VSV) infection. METHODS AND RESULTS: Through a cellular-based study, this study demonstrates that quercetin can modulate the activity of interferon-regulating factor 3 (IRF3). In vivo, it shows that quercetin protects mice from VSV infection by enhancing interferon production and inhibiting the production of proinflammatory cytokines. The study conducts 16S rRNA-based gut microbiota and nontargets metabolomics analyses to elucidate the mechanisms underlying quercetin-mediated bidirectional communication between the gut microbiome and host metabolome during viral infection. Quercetin not only ameliorates VSV-induced dysbiosis of the intestinal flora but also alters serum metabolites related to lipid metabolism. Cross-correlations between the gut bacteriome and the serum metabolome indicate that quercetin can modulate phosphatidylcholine (16:0/0:0) and 5-acetylamino-6-formylamino-3-methyluracil to prevent VSV infection. CONCLUSION: This study systematically elucidates the anti-VSV mechanism of quercetin through gut bacteriome and host metabolome assays, offering new insights into VSV treatment and revealing the mechanisms behind a novel disease management strategy using dietary flavonoid supplements.

13.
Article in English | MEDLINE | ID: mdl-38753235

ABSTRACT

Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4-·)-based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4-· and O2-··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3-9) and good efficiency in the presence of co-existing components (HCO3-, NO3-, Cl-, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs.

14.
ACS Macro Lett ; : 673-680, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755117

ABSTRACT

Chiroptical nanomaterials with circularly polarized luminescence (CPL) performance have aroused increasing attention. Herein, multicolor CPL-active Janus nanofibers are prepared through a simple parallel electrospinning method using chiral helical polyacetylenes as the chiral source and achiral fluorophores as the fluorescent source. Interestingly, despite a direct spatial isolation between the chiral component and the fluorescent component, blue and green CPL emissions can still be obtained due to the fluorescence-selective absorption behavior of chiral helical polyacetylenes, with a satisfactory dissymmetric factor (glum) of 2 × 10-2 and 2.5 × 10-3, respectively. Moreover, by taking advantage of the circular polarization fluorescence energy transfer process, red CPL emission is further achieved using the obtained blue and green CPL as energy donors and the achiral red fluorophore as an energy acceptor. The present work offers a facile approach to prepare multilevel-structured chiroptical materials with promising application potentials in a flexible photoelectric device.

15.
Talanta ; 276: 126235, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38761654

ABSTRACT

N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.

16.
Sci Rep ; 14(1): 11470, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769119

ABSTRACT

In the process of coal-filling mining, the gangue fly-ash slurry (GFS) needs to be transported over a long distance to reach the gobs. The abrupt closure of the valve during the transportation of GFS can result in a water hammer that significantly endangers the stability and safety of the pipeline transport system. To study the fluctuations in pressure induced by abrupt closure of the valve, experiments on the rheological parameters of gangue-coal ash slurry were conducted. Transient numerical simulations were carried out using the computational fluid dynamics method for various valve closing times. The results indicate that, with the increase of slurry concentration, the yield stress of the slurry significantly increases. When the concentration exceeds 76%, the increase in yield stress reaches 38.4% and 35.1%, respectively. Upon valve closure, the internal pressure of the slurry in the pipeline exhibits periodic dynamic oscillations. As the duration of valve closure increases, the frequency of periodic water hammer events decreases. The maximum water hammer pressure caused by valve closure decreases with the increasing distance between the valve and the closure point. At the same time, the intensity of maximum water hammer pressure fluctuations increases with the increase in slurry concentration and flow velocity in the pipeline. The results can provide references for water hammer protection and pipeline selection during the transportation of backfill slurry in mining.

17.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709317

ABSTRACT

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Subject(s)
Chromosome Mapping , Plant Leaves , Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Phenotype , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology
18.
Virus Res ; 345: 199390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710287

ABSTRACT

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.


Subject(s)
Genetic Variation , Genome, Viral , Animals , Phylogeny , China , Granulovirus/genetics , Granulovirus/classification , Granulovirus/isolation & purification , Whole Genome Sequencing , Oryza/virology , Tandem Repeat Sequences/genetics , Plant Diseases/virology , Recombination, Genetic
19.
Biomark Res ; 12(1): 51, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816871

ABSTRACT

Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.

20.
Clin Transl Med ; 14(6): e1724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804588

ABSTRACT

Copper, a trace element and vital cofactor, plays a crucial role in the maintenance of biological functions. Recent evidence has established significant correlations between copper levels, cancer development and metastasis. The strong redox-active properties of copper offer both benefits and disadvantages to cancer cells. The intestinal tract, which is primarily responsible for copper uptake and regulation, may suffer from an imbalance in copper homeostasis. Colorectal cancer (CRC) is the most prevalent primary cancer of the intestinal tract and is an aggressive malignant disease with limited therapeutic options. Current research is primarily focused on the relationship between copper and CRC. Innovative concepts, such as cuproplasia and cuproptosis, are being explored to understand copper-related cellular proliferation and death. Cuproplasia is the regulation of cell proliferation that is mediated by both enzymatic and nonenzymatic copper-modulated activities. Whereas, cuproptosis refers to cell death induced by excess copper via promoting the abnormal oligomerisation of lipoylated proteins within the tricarboxylic acid cycle, as well as by diminishing the levels of iron-sulphur cluster proteins. A comprehensive understanding of copper-related cellular proliferation and death mechanisms offers new avenues for CRC treatment. In this review, we summarise the evolving molecular mechanisms, ranging from abnormal intracellular copper concentrations to the copper-related proteins that are being discovered, and discuss the role of copper in the pathogenesis, progression and potential therapies for CRC. Understanding the relationship between copper and CRC will help provide a comprehensive theoretical foundation for innovative treatment strategies in CRC management.


Subject(s)
Colorectal Neoplasms , Copper , Humans , Copper/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...