Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Microsyst Nanoeng ; 10: 83, 2024.
Article in English | MEDLINE | ID: mdl-38915828

ABSTRACT

Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples.

2.
J Psychopharmacol ; 38(6): 515-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853592

ABSTRACT

BACKGROUND: A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS: This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS: Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS: Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS: This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.


Subject(s)
Cognitive Dysfunction , Corpus Striatum , Dopamine Plasma Membrane Transport Proteins , Magnetic Resonance Imaging , Schizophrenia , Tomography, Emission-Computed, Single-Photon , Humans , Male , Female , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/diagnostic imaging , Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Dorsolateral Prefrontal Cortex/metabolism , Case-Control Studies , Middle Aged , Executive Function/physiology , Neuropsychological Tests , Young Adult
3.
J Chin Med Assoc ; 87(6): 627-634, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656303

ABSTRACT

BACKGROUND: Current evidence of volume changes in hippocampal subdivisions in schizophrenia remains inconsistent, and few studies have investigated the relationship between regional hippocampal volumes and symptom remission. METHODS: In this cross-sectional study, we recruited 31 patients with schizophrenia and 31 healthy controls (HCs). Symptomatic remission in schizophrenia was determined according to Remission in Schizophrenia Working Group criteria. The volumes of hippocampal longitudinal subregions and transverse subfields were measured using manual and automatic techniques, respectively. Between-group regional hippocampal volume differences were analyzed using multivariate analysis of covariance followed by univariate analysis of covariance. RESULTS: Compared with the HCs, the patients with schizophrenia had smaller bilateral heads and tails along the longitudinal axis; they also had reduced volumes of the bilateral CA1, CA3, CA4, GC-ML-DG, molecular layer, tail, left subiculum, left HATA, and right parasubiculum along the transverse axis in the hippocampus (all corrected p < 0.05). Furthermore, compared with the HCs and patients with remitted schizophrenia, the patients with nonremitted schizophrenia had smaller bilateral hippocampal tail subfields (corrected p < 0.05). CONCLUSION: Our results indicated that the pathophysiology and symptomatic remission of schizophrenia are related to changes in the volumes of hippocampal subdivisions. These volume changes might be clinically relevant as biomarkers for schizophrenia identification and treatment.


Subject(s)
Hippocampus , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Hippocampus/pathology , Hippocampus/diagnostic imaging , Adult , Male , Female , Cross-Sectional Studies , Middle Aged , Magnetic Resonance Imaging
4.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362799

ABSTRACT

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cell Differentiation/genetics , Cardiac Myosins/genetics
5.
Microsyst Nanoeng ; 10: 23, 2024.
Article in English | MEDLINE | ID: mdl-38317693

ABSTRACT

Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.

6.
Sci Adv ; 9(51): eadj9964, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134285

ABSTRACT

The study of molecular mechanisms at the single-cell level holds immense potential for enhancing immunotherapy and understanding neuroinflammation and neurodegenerative diseases by identifying previously concealed pathways within a diverse range of paired cells. However, existing single-cell pairing platforms have limitations in low pairing efficiency, complex manual operation procedures, and single-use functionality. Here, we report a multiparametric cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. This platform enables users to efficiently sort and collect effector-target (i.e., NK92-K562) cell pairs and monitor the real-time dynamics of immunological response formation. Furthermore, we conducted transcriptional and protein expression analyses to evaluate the pathways that mediate effector cytotoxicity toward target cells, as well as the synergistic effect of doxorubicin on the cellular immune response. Our CIAMAP can provide promising building blocks for high-throughput quantitative single-cell level coculture to understand intercellular communication while also empowering immunotherapy by precision analysis of immunological synapses.


Subject(s)
Immunity, Cellular , Immunotherapy , Humans , K562 Cells
7.
Brain Sci ; 13(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38002542

ABSTRACT

(1) Background: The hippocampus (HP) and amygdala are essential structures in obsessive-compulsive behavior (OCB); however, the specific role of the HP in patients with behavioral variant frontotemporal dementia (bvFTD) and OCB remains unclear. (2) Objective: We investigated the alterations of hippocampal and amygdalar volumes in patients with bvFTD and OCB and assessed the correlations of clinical severity with hippocampal subfield and amygdalar nuclei volumes in bvFTD patients with OCB. (3) Materials and methods: Eight bvFTD patients with OCB were recruited and compared with eight age- and sex-matched healthy controls (HCs). Hippocampal subfield and amygdalar nuclei volumes were analyzed automatically using a 3T magnetic resonance image and FreeSurfer v7.1.1. All participants completed the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Neuropsychiatric Inventory (NPI), and Frontal Behavioral Inventory (FBI). (4) Results: We observed remarkable reductions in bilateral total hippocampal volumes. Compared with the HCs, reductions in the left hippocampal subfield volume over the cornu ammonis (CA)1 body, CA2/3 body, CA4 body, granule cell layer, and molecular layer of the dentate gyrus (GC-ML-DG) body, molecular layer of the HP body, and hippocampal tail were more obvious in patients with bvFTD and OCB. Right subfield volumes over the CA1 body and molecular layer of the HP body were more significantly reduced in bvFTD patients with OCB than in those in HCs. We observed no significant difference in amygdalar nuclei volume between the groups. Among patients with bvFTD and OCB, Y-BOCS score was negatively correlated with left CA2/3 body volume (τb = -0.729, p < 0.001); total NPI score was negatively correlated with left GC-ML-DG body (τb = -0.648, p = 0.001) and total bilateral hippocampal volumes (left, τb = -0.629, p = 0.002; right, τb = -0.455, p = 0.023); and FBI score was negatively correlated with the left molecular layer of the HP body (τb = -0.668, p = 0.001), CA4 body (τb = -0.610, p = 0.002), and hippocampal tail volumes (τb = -0.552, p < 0.006). Mediation analysis confirmed these subfield volumes as direct biomarkers for clinical severity, independent of medial and lateral orbitofrontal volumes. (5) Conclusions: Alterations in hippocampal subfield volumes appear to be crucial in the pathophysiology of OCB development in patients with bvFTD.

8.
Science ; 382(6674): eadd7795, 2023 12.
Article in English | MEDLINE | ID: mdl-38033054

ABSTRACT

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Subject(s)
Archaeal Proteins , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Methanosarcina , Pyrimidine Dimers , Archaeal Proteins/chemistry , Catalysis , Crystallography/methods , Deoxyribodipyrimidine Photo-Lyase/chemistry , DNA/chemistry , DNA/radiation effects , Methanosarcina/enzymology , Protein Conformation , Pyrimidine Dimers/chemistry , Ultraviolet Rays
9.
BMC Genomics ; 24(1): 414, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488473

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition, and progresses to liver cirrhosis, and even hepatocellular carcinoma. However, the invasive diagnosis of NAFLD with histopathological evaluation remains risky. This study investigated potential genes correlated with NAFLD, which may serve as diagnostic biomarkers and even potential treatment targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was constructed based on dataset E-MEXP-3291. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to evaluate the function of genes. RESULTS: Blue module was positively correlated, and turquoise module negatively correlated with the severity of NAFLD. Furthermore, 8 driving genes (ANXA9, FBXO2, ORAI3, NAGS, C/EBPα, CRYAA, GOLM1, TRIM14) were identified from the overlap of genes in blue module and GSE89632. And another 8 driving genes were identified from the overlap of turquoise module and GSE89632. Among these driving genes, C/EBPα (CCAAT/enhancer binding protein α) was the most notable. By validating the expression of C/EBPα in the liver of NAFLD mice using immunohistochemistry, we discovered a significant upregulation of C/EBPα protein in NAFLD. CONCLUSION: we identified two modules and 16 driving genes associated with the progression of NAFLD, and confirmed the protein expression of C/EBPα, which had been paid little attention to in the context of NAFLD, in the present study. Our study will advance the understanding of NAFLD. Moreover, these driving genes may serve as biomarkers and therapeutic targets of NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Mice , Gene Expression Profiling
10.
Prog Brain Res ; 278: 79-116, 2023.
Article in English | MEDLINE | ID: mdl-37414495

ABSTRACT

Approximately 40% of patients with major depressive disorder (MDD) had limited response to conventional antidepressant treatments, resulting in treatment-resistant depression (TRD), a debilitating subtype that yielded a significant disease burden worldwide. Molecular imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPECT), can measure targeted macromolecules or biological processes in vivo. These imaging tools provide a unique possibility to explore the pathophysiology and treatment mechanisms underlying TRD. This work reviewed and summarized prior PET and SPECT studies to examine the neurobiology and treatment-induced changes of TRD. A total of 51 articles were included with supplementary information from studies for MDD and healthy controls (HC). We found that there were altered regional blood flow or metabolic activity in several brain regions, such as the anterior cingulate cortex, prefrontal cortex, insula, hippocampus, amygdala, parahippocampus, and striatum. These regions have been suggested to engage in the pathophysiology or treatment resistance of depression. There was also limited data to demonstrate the changes in the markers of serotonin, dopamine, amyloid, and microglia over some regions in TRD. Moreover, several observed abnormal imaging indices were linked to treatment outcomes, supporting their specificity and clinical relevance. To address the limitations of the included studies, we proposed that future studies needed longitudinal designs, multimodal approaches, and radioligands targeting specific neural substrates for TRD to evaluate their baseline and treatment-related alterations in TRD. Adequate data sharing and reproducible data analysis can facilitate advances in this field.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/drug therapy , Brain/metabolism , Prefrontal Cortex , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
11.
Gastrointest Endosc ; 98(5): 755-764, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37356632

ABSTRACT

BACKGROUND AND AIMS: Peptic ulcer recurrent bleeding occurs in 20% to 30% of patients after standard endoscopic hemostasis, particularly within 4 days after the procedure. The application of additional tranexamic acid (TXA) to the ulcer may enhance hemostasis. This study investigated the effectiveness of TXA powder application on bleeding ulcers during endoscopic hemostasis. METHODS: This study enrolled patients who had peptic ulcer bleeding between March 2022 and February 2023. After undergoing standard endoscopic therapy, the patients were randomly assigned to either the TXA group or the standard group. In the TXA group, an additional 1.25 g of TXA powder was sprayed endoscopically on the ulcer. Both groups then received 3 days of high-dose (8 mg/h) continuous infusion proton pump inhibitor therapy. Second-look endoscopy was conducted on days 3 to 4. The primary end point of early treatment failure was defined as ulcer recurrent bleeding within 4 days or major stigmata of recent hemorrhage on the second-look endoscopy. RESULTS: Sixty patients (30 in each group) with peptic ulcer bleeding and balanced baseline characteristics were randomly assigned to a treatment group. The early treatment failure rate was lower in the TXA group (6.7%) than in the standard group (30%) (P = .042). The freedom from treatment failure periods for 4 and 28 days was significantly longer in the TXA group than in the standard group (P = .023). No adverse events from TXA were recorded. CONCLUSIONS: The precise delivery of topical TXA alongside standard endoscopic hemostasis reduced the early treatment failure rate in patients with bleeding peptic ulcers. (Clinical trial registration number: NCT05248321.).

12.
J Mol Cell Cardiol ; 179: 60-71, 2023 06.
Article in English | MEDLINE | ID: mdl-37019277

ABSTRACT

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-ß fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Gene Editing , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathies/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cell Line , Mutation
13.
J Psychiatr Res ; 160: 210-216, 2023 04.
Article in English | MEDLINE | ID: mdl-36857985

ABSTRACT

INTRODUCTION: Amygdala and serotonergic system abnormalities have been documented in major depressive disorder (MDD). However, most studies have been conducted on recurrent MDD, and only a few have assessed their interaction. This study aimed to concurrently examine both the amygdala and serotonergic systems and their clinical relevance in first-episode, drug-naïve MDD. METHODS: This study included 27 patients with first-episode, drug-naïve MDD and 27 age- and gender-matched healthy controls (HCs). The amygdala substructure volumes were performed with Freesurfer from a 1.5 T magnetic resonance image. Serotonin transporter (SERT) availability was detected by single-photon emission computed tomography with 123I-ADAM. The Benjamini-Hochberg method was applied to adjust for multiple comparisons. RESULTS: No significant difference was found in the amygdala substructure volume and SERT availability between the two groups, respectively. Within MDD patients, the right medial, cortical nucleus, and centromedial volumes were positively associated with caudate SERT availability, respectively. Moreover, the right lateral nucleus volume in the amygdala was positively correlated with depression severity. However, these significances did not survive correction for multiple testing. CONCLUSIONS: There were no significant abnormalities in the amygdala substructure volumes and SERT availability in patients with first-episode, drug-naïve MDD. We did not observe an association between amygdala substructure volume and serotonergic dysregulation and their correlations with depression severity in patients with MDD. A larger sample size is warranted to elucidate the actual correlation.


Subject(s)
Depressive Disorder, Major , Humans , Serotonin Plasma Membrane Transport Proteins/metabolism , Pilot Projects , Tomography, Emission-Computed, Single-Photon , Amygdala/metabolism , Magnetic Resonance Imaging
14.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902340

ABSTRACT

Missense mutations in myosin heavy chain 7 (MYH7) are a common cause of hypertrophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7-based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adult-onset systolic dysfunction. MYH7E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7E848G/+ HCM patients. Interestingly, MYH7E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis is associated with the MYH7E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Adult , Humans , Myocytes, Cardiac/metabolism , Tumor Suppressor Protein p53/metabolism , Cardiac Myosins/genetics , Mutation , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Myocardial Contraction/genetics , Apoptosis , Myosin Heavy Chains/metabolism
15.
bioRxiv ; 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36747685

ABSTRACT

Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CR ISPR a On- T arget E diting R etrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNVs) in MYH7 , a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different MYH7 SNVs. We differentiated these hiPSCs to cardiomyocytes and show MYH7 fusion proteins can localize as expected. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of transgenic cell lines at unprecedented scale.

16.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747800

ABSTRACT

Missense mutations in myosin heavy chain 7 ( MYH7 ) are a common cause of hyper-trophic cardiomyopathy (HCM), but the molecular mechanisms underlying MYH7 -based HCM remain unclear. In this work, we generated cardiomyocytes derived from isogenic human induced pluripotent stem cells to model the heterozygous pathogenic MYH7 missense variant, E848G, which is associated with left ventricular hypertrophy and adultonset systolic dysfunction. MYH7 E848G/+ increased cardiomyocyte size and reduced the maximum twitch forces of engineered heart tissue, consistent with the systolic dysfunction in MYH7 E848G HCM patients. Interestingly, MYH7 E848G/+ cardiomyocytes more frequently underwent apoptosis that was associated with increased p53 activity relative to controls. However, genetic ablation of TP53 did not rescue cardiomyocyte survival or restore engineered heart tissue twitch force, indicating MYH7 E848G/+ cardiomyocyte apoptosis and contractile dysfunction are p53-independent. Overall, our findings suggest that cardiomyocyte apoptosis plays an important role in the MYH7 E848G/+ HCM phenotype in vitro and that future efforts to target p53-independent cell death pathways may be beneficial for the treatment of HCM patients with systolic dysfunction.

17.
Biosens Bioelectron ; 224: 115061, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36634509

ABSTRACT

The intrinsic biophysical properties of cells, such as mechanical, acoustic, and electrical properties, are valuable indicators of a cell's function and state. However, traditional single-cell biophysical characterization methods are hindered by limited measurable properties, time-consuming procedures, and complex system setups. This study presents acousto-dielectric tweezers that leverage the balance between controllable acoustophoretic and dielectrophoretic forces applied on cells through surface acoustic waves and alternating current electric fields, respectively. Particularly, the balanced acoustophoretic and dielectrophoretic forces can trap cells at equilibrium positions independent of the cell size to differentiate between various cell-intrinsic mechanical, acoustic, and electrical properties. Experimental results show our mechanism has the potential for applications in single-cell analysis, size-insensitive cell separation, and cell phenotyping, which are all primarily based on cells' intrinsic biophysical properties. Our results also show the measured equilibrium position of a cell can inversely determine multiple biophysical properties, including membrane capacitance, cytoplasm conductivity, and acoustic contrast factor. With these features, our acousto-dielectric tweezing mechanism is a valuable addition to the resources available for biophysical property-based biological and medical research.


Subject(s)
Biosensing Techniques , Sound , Cytoplasm , Electric Conductivity , Acoustics
18.
Stem Cell Res ; 66: 102987, 2023 02.
Article in English | MEDLINE | ID: mdl-36481506

ABSTRACT

Arrhythmogenic cardiomyopathy is an inheritable heart disease characterized by lethal heart rhythms and abnormal contractile function. Mutations in desmoplakin (DSP), a protein linking the cardiac desmosome with intermediate filaments, are associated with arrhythmogenic cardiomyopathy. Here we generated a human induced pluripotent stem cell (hiPSC) line from a patient with a heterozygous protein-truncating variant in DSP (c.1386del Leu462Serfs*22). This line has a normal karyotype and expression of pluripotency markers, and can differentiate into all three germ layers. This line is well suited for in vitro mechanistic studies of mechanism of DSP protein-truncation mutations in the context of arrhythmogenic cardiomyopathy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Induced Pluripotent Stem Cells , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Heart , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics
19.
World J Clin Cases ; 10(33): 12430-12439, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36483820

ABSTRACT

BACKGROUND: Phlegmonous gastritis (PG) is a rare bacterial infection of the gastric submucosa and is related to septicemia, direct gastric mucosal injury, or the direct influence of infection or inflammation in neighboring organs. Here, we present a patient who had spontaneous biloma caused by choledocholithiasis and then PG resulting from bile leakage after biloma drainage. CASE SUMMARY: A 79-year-old man with a medical history of hypertension had persistent diffuse abdominal pain for 4 d. Physical examination showed stable vital signs, icteric sclera, diffuse abdominal tenderness, and muscle guarding. Laboratory tests showed hyperbilirubinemia and bandemia. Contrast computed tomography (CT) of the abdomen showed a dilated common bile duct and left subphrenic abscess. Left subphrenic abscess drainage revealed bilious fluid, and infected biloma was confirmed. Repeated abdominal CT for persistent epigastralgia after drainage showed gastric wall thickening. Esophagogastroduodenoscopy (EGD) showed an edematous, hyperemic gastric mucosa with poor distensibility. The gastric mucosal culture yielded Enterococcus faecalis. PG was diagnosed based on imaging, EGD findings, and gastric mucosal culture. The patient recovered successfully with antibiotic treatment. CONCLUSION: PG should be considered in patients with intraabdominal infection, especially from infected organs adjacent to the stomach.

20.
Viruses ; 14(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36366525

ABSTRACT

The outcomes for patients with NASH-related HCC after curative resection have not been clarified. This study compared the overall survival (OS), time-to-tumor recurrence (TTR), and recurrence-free survival (RFS) associated with NASH-related HCC and virus-related HCC after resection. Methods: Patients with HCC who underwent curative resection were retrospectively enrolled. Baseline characteristics, including disease etiologies and clinical and tumor features, were reviewed. The primary outcomes were OS, TTR, and RFS. Results: Two hundred and six patients were enrolled (HBV: n = 121, HCV: n = 54, NASH: n = 31). Of those with virus-related HCC, 84.0% achieved viral suppression. In both the overall and propensity-score-matched cohorts, those with NASH-related HCC experienced recurrence significantly earlier than those with virus-related HCC (median TTR: 1108 days vs. non-reached; p = 0.03). Through multivariate analysis, NASH-related HCC (hazard ratio (HR), 2.27; 95% confidence interval (CI), 1.25-4.12) was independently associated with early recurrence. The unadjusted RFS rate of the NASH-related HCC group was lower than the virus-related HCC group. There was no difference in the OS between the two groups. Conclusions: NASH-related HCC was associated with earlier tumor recurrence following curative resection compared to virus-related HCC. Post-surgical surveillance is crucial for detecting early recurrence in patients with NASH-related HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/etiology , Liver Neoplasms/surgery , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/surgery , Retrospective Studies , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL
...