Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 658: 80-87, 2023 05 28.
Article in English | MEDLINE | ID: mdl-37027908

ABSTRACT

Wfs1 is an endoplasmic reticulum (ER) membrane located protein highly expressed in pancreatic ß cells and brain. Wfs1 deficiency causes adult pancreatic ß cells dysfunction following ß cells apoptosis. Previous studies mainly focus on the Wfs1 function in adult mouse pancreatic ß cells. However, whether Wfs1 loss-of-function impairs mouse pancreatic ß cell from its early development is unknown. In our study, Wfs1 deficiency disrupts the composition of mouse pancreatic endocrine cells from early postnatal day 0 (P0) to 8 weeks old, with decreased percentage of ß cells and increased percentage of α and δ cells. Meanwhile, Wfs1 loss-of-function leads to reduced intracellular insulin content. Notably, Wfs1 deficiency impairs Glut2 localization and causes the accumulation of Glut2 in mouse pancreatic ß cell cytoplasm. In Wfs1-deficient mice, glucose homeostasis is disturbed from early 3 weeks old to 8 weeks old. This work reveals that Wfs1 is significantly required for the composition of pancreatic endocrine cells and is essential for Glut2 localization in mouse pancreatic ß cells.


Subject(s)
Insulin-Secreting Cells , Membrane Proteins , Wolfram Syndrome , Animals , Mice , Endoplasmic Reticulum/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Wolfram Syndrome/metabolism , Membrane Proteins/genetics , Loss of Function Mutation
2.
Mol Psychiatry ; 28(4): 1557-1570, 2023 04.
Article in English | MEDLINE | ID: mdl-36750736

ABSTRACT

Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.


Subject(s)
Human Embryonic Stem Cells , Wolfram Syndrome , Animals , Mice , Humans , Wolfram Syndrome/drug therapy , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Riluzole/pharmacology , Riluzole/metabolism , Calcium/metabolism , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Mice, Knockout , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...